[oraux/ex7230] mines PC 2015 Soient \(A\), \(B\) dans \(\mathscr{M}_n(\mathbf{C})\) tels que \(AB-BA=B^2\).
[oraux/ex7230]
Pour \(k\in\mathbf{N}^*\), calculer \(AB^k-B^kA\).
En déduire : \(\forall P\in\mathbf{R}[X]\), \(AP(B)-P(B)A=B^2P'(B)\).
[ev.algebre/ex1245] Trouver toutes les matrices carrées réelles telles que \(A^2=B\), où \[B=\left(\begin{array}{cc} 1&4\\0&-9 \end{array}\right).\]
[ev.algebre/ex1245]
[oraux/ex7088] mines MP 2014 Soit \(J=\pmatrix{0&0&1\cr0&1&0\cr1&0&0}\) et \(K=\pmatrix{0&1&0\cr1&0&1\cr0&1&0}\). Déterminer tous les polynômes \(P\) de \(\mathbf{C}[X]\) tels que \(P(J)=K\).
[oraux/ex7088]
[planches/ex9692] mines MP 2023 Soient \(A=\pmatrix{1 & 1 & 0 & \cdots & 0 \cr 0 & \ddots & \ddots & \ddots & \vdots \cr \vdots & \ddots & \ddots & \ddots & 0 \cr \vdots & & \ddots & \ddots & 1 \cr 0 & \cdots & \cdots & 0 & 1}\) et \(N=A-I_n\).
[planches/ex9692]
Soit \((E)\) l’équation matricielle \(X^2=A\).
Quelles sont les matrices qui commutent avec \(N\) ?
Montrer que les solutions de \((E)\) sont de la forme \(X=\pm\pmatrix{1 & a_1 & \cdots & a_{n-1} \cr 0 & \ddots & \ddots & \vdots \cr \vdots & \ddots & \ddots & a_1 \cr 0 & \cdots & 0 & 1}\). Montrer qu’il y a au plus deux solutions.
Rappeler le développement limité à l’ordre \(n\) de \(x\mapsto\sqrt{1+x}\). Résoudre \((E)\).
[concours/ex0403] centrale MP 1996 On considère le système : \[\left\{\begin{array}{rcl} XY+YX &=& 0\\ X^2 &=& 0\\ Y^2 &=& 0\\ XY &\neq& 0 \end{array}\right.\quad\hbox{avec}\quad(X,Y)\in\mathscr{M}_n(\mathbf{R})^2\,.\]
[concours/ex0403]
Montrer que, pour \(n=2\), le système n’a pas de solution.
Montrer que, pour \(n=2r\) (avec \(r\geqslant 2\)), il y a une solution telle que \(\mathop{\mathchoice{\hbox{rg}}{\hbox{rg}}{\mathrm{rg}}{\mathrm{rg}}}\nolimits X=r\).
Étudier le cas où \(n\) est impair.
Vous pouvez choisir d'afficher tous les résultats d'une requête de façon individuelle, ou en les regroupant par familles d'exercices