[ev.algebre/ex1228] Soit \(B=\left(\begin{array}{cc}1&0\\26&27\end{array}\right)\). Trouver une matrice \(A\) telle que \(A^3=B\).
[ev.algebre/ex1228]
[oraux/ex6413] hec courts T 2013 Soit \(a_1\), \(a_2\) et \(a_3\) des réels non nuls et soit \(M\) la matrice définie par \(M=\pmatrix{1&a_1/a_2&a_1/a_3\cr a_2/a_1&1&a_2/a_3\cr a_3/a_1&a_2/a_1&1}\).
[oraux/ex6413]
Calculer \(M^2\). En déduire que la matrice \(M\) n’est pas inversible.
Déterminer tous les vecteurs \(Y\) de \(\mathbf{R}^3\) tels que \(MY=3Y\).
[ev.algebre/ex1106] Résoudre dans \(\mathscr{M}_2(\mathbf{R})^2\) : \[XY=\left(\begin{array}{cc}0&1\\0&0\end{array}\right),\quad YX=\left(\begin{array}{cc}0&0\\0&0\end{array}\right).\]
[ev.algebre/ex1106]
[concours/ex8772] polytechnique MP 2009 Trouver les \(A\) de \(\mathscr{M}_n(\mathbf{R})\) telles que \(A^3+A^2=2I_n\).
[concours/ex8772]
[oraux/ex7755] mines MP 2016 Résoudre dans \(\mathscr{M}_2(\mathbf{Z}/5\mathbf{Z})\) : \(M^2=\pmatrix{\overline4&\overline2\cr\overline4&\overline1}\).
[oraux/ex7755]
Vous avez le choix entre plusieurs mises en page des PDF contenant les exercices : testez-les !