[planches/ex9692] mines MP 2023 Soient \(A=\pmatrix{1 & 1 & 0 & \cdots & 0 \cr 0 & \ddots & \ddots & \ddots & \vdots \cr \vdots & \ddots & \ddots & \ddots & 0 \cr \vdots & & \ddots & \ddots & 1 \cr 0 & \cdots & \cdots & 0 & 1}\) et \(N=A-I_n\).
[planches/ex9692]
Soit \((E)\) l’équation matricielle \(X^2=A\).
Quelles sont les matrices qui commutent avec \(N\) ?
Montrer que les solutions de \((E)\) sont de la forme \(X=\pm\pmatrix{1 & a_1 & \cdots & a_{n-1} \cr 0 & \ddots & \ddots & \vdots \cr \vdots & \ddots & \ddots & a_1 \cr 0 & \cdots & 0 & 1}\). Montrer qu’il y a au plus deux solutions.
Rappeler le développement limité à l’ordre \(n\) de \(x\mapsto\sqrt{1+x}\). Résoudre \((E)\).
[ev.algebre/ex1244] Trouver toutes les matrices carrées réelles telles que \(A^2=B\), où \[B=\left(\begin{array}{cc} 4&21\\0&25 \end{array}\right).\]
[ev.algebre/ex1244]
[ev.algebre/ex1011] Déterminer les matrices \(A\) de \(\mathscr{S}_2(\mathbf{C})\) telles que \(A^2=A\).
[ev.algebre/ex1011]
[oraux/ex7316] polytechnique, espci PC 2016 Soit \(P\in\mathscr{M}_n(\mathbf{R})\) une matrice non nulle à coefficients dans \(\mathbf{Z}\) et \(M=I_n+3P\). Montrer que \(M^3\neq I_n\). Plus généralement, montrer, pour \(k\in\mathbf{N}\), que \(M^{3^k}\neq I_n\).
[oraux/ex7316]
[concours/ex8522] centrale PC 2005 Trouver les matrices \(M\) de \(\mathscr{M}_2(\mathbf{R})\) telles que : \(M^2=\left(\begin{array}{cc}1&1\\0&0\end{array}\right)\).
[concours/ex8522]
[oraux/ex7193] polytechnique, espci PC 2015
[oraux/ex7193]
Déterminer la dimension du sous-espace de \(\mathscr{M}_2(\mathbf{R})\) engendré par les matrices \(M\) vérifiant \(M^2=\mathop{\mathchoice{\hbox{diag}}{\hbox{diag}}{\mathrm{diag}}{\mathrm{diag}}}\nolimits(1,2)\).
Déterminer la dimension du sous-espace de \(\mathscr{M}_2(\mathbf{R})\) engendré par les matrices \(M\) vérifiant \(M^2=I_2\).
[oraux/ex7088] mines MP 2014 Soit \(J=\pmatrix{0&0&1\cr0&1&0\cr1&0&0}\) et \(K=\pmatrix{0&1&0\cr1&0&1\cr0&1&0}\). Déterminer tous les polynômes \(P\) de \(\mathbf{C}[X]\) tels que \(P(J)=K\).
[oraux/ex7088]
[oraux/ex7041] polytechnique MP 2014 Soit \(A\in\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{R})\). On suppose que tous les coefficients de \(A\) sont des entiers naturels et que l’ensemble \(\{(A^k)_{i,j},\ (i,j)\in[[1,n]]^2,\ k\in\mathbf{N}\}\) est fini. Montrer que \(A\) est une matrice de permutation.
[oraux/ex7041]
[ev.algebre/ex1211] Trouver une matrice triangulaire supérieure telle que \(A^3=\left(\begin{array}{cc}8&-57\\0&27\end{array}\right)\).
[ev.algebre/ex1211]
[oraux/ex6010] hec E 2014
[oraux/ex6010]
Question de cours : Définition de deux matrices semblables.
Soit \(E\) un espace vectoriel sur \(\mathbf{R}\) de dimension 2. On note \(\mathscr{L}(E)\) l’ensemble des endomorphismes de \(E\).
Pour toute matrice \(A=\left(\begin{array}{cc}a&c\\b&d\end{array}\right)\in\mathscr{M}_2(\mathbf{R})\), on note \(D\) et \(T\) les deux applications suivantes : \[D:\mathscr{M}_2(\mathbf{R})\rightarrow\mathbf{R},\ A\mapsto ad-bc\quad\hbox{et}\quad T:\mathscr{M}_2(\mathbf{R})\rightarrow\mathbf{R},\ A\mapsto a+d.\]
Soit \(A\) et \(B\) deux matrices de \(\mathscr{M}_2(\mathbf{R})\).
Exprimer \(D(AB)\) en fonction de \(D(A)\) et \(D(B)\). Montrer que \(T(AB)=T(BA)\).
En déduire que si \(A\) et \(B\) sont semblables, on a \(D(A)=D(B)\) et \(T(A)=T(B)\).
Déterminer \(\mathop{\mathchoice{\hbox{ker}}{\hbox{ker}}{\mathrm{ker}}{\mathrm{ker}}}\nolimits D\) et \(\mathop{\mathchoice{\hbox{ker}}{\hbox{ker}}{\mathrm{ker}}{\mathrm{ker}}}\nolimits T\). Quelle est la dimension de \(\mathop{\mathchoice{\hbox{ker}}{\hbox{ker}}{\mathrm{ker}}{\mathrm{ker}}}\nolimits T\) ?
Dorénavant, si \(u\in\mathscr{L}(E)\) de matrice \(A\) dans une base \(\mathscr{B}\) de \(E\), on note : \(D(u)=D(A)\) et \(T(u)=T(A)\).
On note \(\mathchoice{\hbox{Id}}{\hbox{Id}}{\mathrm{Id}}{\mathrm{Id}}_E\) l’endomorphisme identité de \(E\). Exprimer \(u^2=u\mathbin{\circ} u\) en fonction de \(u\) et \(\mathchoice{\hbox{Id}}{\hbox{Id}}{\mathrm{Id}}{\mathrm{Id}}_E\).
Soit \(u\in\mathscr{L}(E)\) et \(\mathscr{S}_0=\{v\in\mathscr{L}(E)\mid u\mathbin{\circ} v-v\mathbin{\circ} u=0\}\).
Montrer que \(\mathscr{S}_0\) est un espace vectoriel contenant \(\{P(u),\ P\in\mathbf{R}[X]\}\).
Soit \(u\in\mathscr{L}(E)\) avec \(u\neq0\). On pose : \(\mathscr{S}=\{v\in\mathscr{L}(E)\mid u\mathbin{\circ} v-v\mathbin{\circ} u=u\}\).
Montrer que si \(\mathscr{S}\) est non vide, alors l’endomorphisme \(u\) ne peut pas être bijectif. En déduire une condition nécessaire portant sur \(u^2\) pour que \(\mathscr{S}\) soit non vide.
On suppose que \(\mathscr{S}\) est non vide. Établir l’existence d’une base \(\mathscr{B}_1=(e_1,e_2)\) de \(E\) dans laquelle la matrice \(M_u\) de \(u\) s’écrit \(M_u=\left(\begin{array}{cc}0&1\\0&0\end{array}\right)\) et déterminer la forme générale de la matrice des éléments \(v\) de \(\mathscr{S}\) dans cette même base.
On suppose que \(\mathscr{S}\) est non vide. Montrer que \(\mathscr{S}=\{v_0+\alpha\mathchoice{\hbox{Id}}{\hbox{Id}}{\mathrm{Id}}{\mathrm{Id}}_E+\beta u,\ \alpha,\ \beta\in\mathbf{R}\}\) où \(v_0\) est un endomorphisme non inversible de \(E\) à déterminer.
[oraux/ex7755] mines MP 2016 Résoudre dans \(\mathscr{M}_2(\mathbf{Z}/5\mathbf{Z})\) : \(M^2=\pmatrix{\overline4&\overline2\cr\overline4&\overline1}\).
[oraux/ex7755]
[concours/ex8647] polytechnique, espci PC 2008 Soit \(n\in\mathbf{N}^*\). Résoudre dans \(\mathscr{M}_2(\mathbf{C})\) : \(X^n=\left(\begin{array}{cc}1&1\\1&1\end{array}\right)\).
[concours/ex8647]
[planches/ex4585] ens PC 2019 Soit \(\alpha\in\mathbf{C}\). Résoudre dans \(\mathscr{M}_2(\mathbf{C})\) : \(X^3+X=\pmatrix{1&\alpha\cr\alpha&1}\).
[planches/ex4585]
[concours/ex8481] mines PC 2005 Trouver les matrices \(A\) de \(\mathscr{M}_5(\mathbf{R})\) telles que : \(A=A^2-I_5\).
[concours/ex8481]
[concours/ex8989] tpe MP 2010 Déterminer les matrices \(A\) de \(\mathscr{M}_n(\mathbf{Z}/7\mathbf{Z})\) telles que \(A^3=I_n\).
[concours/ex8989]
[planches/ex3408] mines MP 2018 Résoudre dans \(\mathscr{M}_2(\mathbf{Z})\) l’équation \(X^{2n+1}+X=I_2\).
[planches/ex3408]
[planches/ex2699] imt PSI 2017 Soit \(A=\pmatrix{1&2&3\cr0&1&2\cr0&0&1}\).
[planches/ex2699]
Soit \(X\) une matrice telle que \(X^2=A\). Montrer que \(X\) et \(A\) commutent, puis que \(X\) est triangulaire supérieure.
Trouver toutes les matrices \(X\) telles que \(X^2=A\).
[ev.algebre/ex1245] Trouver toutes les matrices carrées réelles telles que \(A^2=B\), où \[B=\left(\begin{array}{cc} 1&4\\0&-9 \end{array}\right).\]
[ev.algebre/ex1245]
[oraux/ex7005] petites mines PSI 2013 Soit \(A=\pmatrix{1&3&5\cr2&4&6\cr3&5&7}\). Trouver toutes les matrices \(B\in\mathscr{M}_3(\mathbf{R})\) telles que \(\mathop{\mathchoice{\hbox{ker}}{\hbox{ker}}{\mathrm{ker}}{\mathrm{ker}}}\nolimits(A)=\mathop{\mathchoice{\hbox{Im}}{\hbox{Im}}{\mathrm{Im}}{\mathrm{Im}}}\nolimits(B)\), \(\mathop{\mathchoice{\hbox{ker}}{\hbox{ker}}{\mathrm{ker}}{\mathrm{ker}}}\nolimits(B)=\mathop{\mathchoice{\hbox{Im}}{\hbox{Im}}{\mathrm{Im}}{\mathrm{Im}}}\nolimits(A)\) et \(\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits(A)=\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits(B)\).
[oraux/ex7005]
[ev.algebre/ex1012] Déterminer les matrices \(A\) de \(\mathscr{S}_2(\mathbf{C})\) telles que \(A^2=I_2\).
[ev.algebre/ex1012]
Vous pouvez pré-filtrer l'affichage des exercices, en imposant par exemple uniquement des exercices posés aux concours