[structures/ex0050] Écrire la table de multiplication du groupe des (\(10\)) symétries d’un pentagone régulier. Construire un isomorphisme de ce groupe dans un sous-groupe de \(\mathfrak{S}_5\).
[structures/ex0050]
[ev.algebre/ex1127] Montrer que : \(\left\{\left(\begin{array}{ccc} 1&0&x\\ -x&1&-\displaystyle{x^2\over2}\\0&0&1\end{array}\right)\mid x\in\mathbf{R}\right\}\) est un groupe multiplicatif, isomorphe à \((\mathbf{R},{+})\).
[ev.algebre/ex1127]
[planches/ex4406] ens saclay, ens rennes MP 2019 Soient \(G\) un groupe fini, \(H\) et \(H'\) deux sous-groupes de \(G\). On dit que \(H\) et \(H'\) sont conjugués dans \(G\) lorsqu’il existe \(g\in G\) tel que \(H=gH'g^{-1}\).
[planches/ex4406]
Montrer que si \(H\) et \(H'\) sont conjugués dans \(G\) alors ils sont isomorphes.
Donner un contre-exemple à l’implication réciproque.
On suppose \(H\) isomorphe à \(H'\).
Vérifier que \(\varphi:g\in G\longmapsto[h\longmapsto gh]\in\mathfrak{S}(G)\) est un morphisme injectif.
Montrer que s’il existe \(\gamma\in\mathfrak{S}(G)\) tel que \(\varphi(H)=\gamma^{-1}\varphi(H')\gamma\) et \(\gamma(1_G)=1_G\), alors \(\gamma\) se restreint à un isomorphisme de \(H\) sur \(H'\).
Montrer qu’il existe un entier \(r\geqslant 1\) et des éléments \(x_1\), … , \(x_r\), \(x'_1\), … , \(x'_r\) de \(G\) tels que \((Hx_i)_{1\leqslant i\leqslant r}\) et \((H'x'_i)_{1\leqslant i\leqslant r}\) partitionnent \(G\).
En déduire que \(\varphi(H)\) et \(\varphi(H')\) sont conjugués dans \(\mathfrak{S}(G)\).
[structures/ex0060] Soit \(\mathscr{C}\) l’ensemble des fonctions continues de \([0,1]\) dans \(\mathbf{R}\).
[structures/ex0060]
Trouver dans quels cas \(F\) est-elle un homomorphisme de \((\mathscr{C},{+})\) dans \((\mathbf{R},{+})\), où \(F(f)\) est :
\(f(1)\).
\(|f(0)|\).
\(\displaystyle{\int\limits_0^1f(x)\,dx}\).
\(\displaystyle{ {\pi\over3}\int_0^1f(x)\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits{\pi x\over6}\,dx}\).
\(\displaystyle{\int_0^1\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits{\pi f(x)\over6}\,dx}\).
\(\displaystyle{\int_0^1f\left(\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits{\pi x\over6}\right)\,dx}\).
\(\displaystyle{\int\limits_0^1\int\limits_0^1f(x)\,f(y)\,dy\,dx}\).
\(\displaystyle{\int\limits_0^1\int\limits_0^1f(xy)\,dy\,dx}\).
\(\displaystyle{2\int\limits_0^1\int\limits_0^xf(y)\,dy\,dx}\).
\(\displaystyle{-f(0)+\int\limits_{-2}^0f(e^x)\,dx}\).
Pour chacun des \(7\) homomorphismes de la liste précédente, montrer que \(F(\mathbf{c})=c\) pour tout \(c\in\mathbf{R}\), où \(\mathbf{c}\) est la fonction constante égale à \(c\), et qu’il existe un unique réel \(m\) tel que \(F(I_J-\mathbf{m})=0\). En déduire qu’il n’y a pas deux homomorphismes de la liste qui aient le même noyau.
Montrer que, si \(F\) est un homomorphisme quelconque de \((\mathscr{C},{+})\) dans \((\mathbf{R},{+})\) tel que \(F(\mathbf{c})=c\) pour tout \(c\in\mathbf{R}\), alors \(\mathscr{C}\) est la somme directe du noyau de \(F\) et du sous-groupe des fonctions constantes. En déduire qu’il existe beaucoup de sous-groupes \(F\) de \(\mathscr{C}\) tels que \(\mathscr{C}\) soit la somme directe de \(F\) et du sous-groupe des fonctions constantes.
[ev.algebre/ex1033] Soit \(F=\Bigl\{A\in\mathscr{M}_2(\mathbf{R})\mid\exists a\in\mathbf{R}^*\quad A=\left(\begin{array}{cc} a&0\\0&1\end{array}\right)\Bigr\}\).
[ev.algebre/ex1033]
Montrer que \((F,{\times})\) est un groupe commutatif.
Montrer que \(\varphi:\mathbf{R}^*\rightarrow F\), \(a\mapsto\left(\begin{array}{cc} a&0\\0&1\end{array}\right)\) est un isomorphisme de groupes.
Vous pouvez produire plusieurs PDF en répartissant les exercices choisis