[oraux/ex6505] polytechnique, espci PC 2013 Les groupes \((\mathbf{R},{+})\) et \((\mathbf{Q},{+})\) sont-ils isomorphes ?
[oraux/ex6505]
[structures/ex0603] Pour chaque fonction \(f\) ci-dessous, déterminer si c’est un endomorphisme du groupe \((\mathbf{R}^*,{\times})\) et, le cas échéant, trouver son noyau et son image.
[structures/ex0603]
\(f(x)=|x|\).
\(f(x)=-x\).
\(f(x)=2^x\).
\(f(x)=\sqrt{|x|}\).
[planches/ex7099] centrale MP 2021 Soit \(G\) un groupe. On note \(\widehat G\) l’ensemble des morphismes de groupes de \(G\) dans \((\mathbf{C}^*,{\times})\).
[planches/ex7099]
Rappeler les définitions d’un groupe et d’un morphisme de groupes. Montrer que \(\widehat G\) est un groupe.
Déterminer \(\widehat G\) dans le cas où \(G=\mathbf{Z}/n\mathbf{Z}\).
[ev.algebre/ex0104] Soit \(\mathscr{H}\) l’ensemble des homothéties d’un espace vectoriel \(E\), de rapport non nul. Montrer que \(\mathscr{H}\), muni de la composition, est un sous-groupe du groupe des bijections de \(E\), isomorphe au groupe multiplicatif \(K^*\).
[ev.algebre/ex0104]
Indication : on prouvera que \(\lambda\mapsto\lambda\,\mathchoice{\hbox{Id}}{\hbox{Id}}{\mathrm{Id}}{\mathrm{Id}}\) est un morphisme de groupes.
[concours/ex1382] centrale MP 1998 Trouver tous les morphismes de groupes de \((\mathbf{Z}/n\mathbf{Z},{+})\) dans \((\mathbf{C}^*,{\times})\).
[concours/ex1382]
La plupart des textes affichés provoquent l'apparition de bulles d'aide au passage de la souris