[structures/ex0676] Soit \((G,\,{\cdot}\,)\) un groupe. On considère l’application : \[f_a\ :\ \left\{\begin{array}{rcl} G&\longrightarrow&G\\x&\longmapsto&a\cdot x\cdot a^{-1}\end{array}\right.\qquad\hbox{($a\in G$, fixé).}\]
[structures/ex0676]
Montrer que \(f_a\) est un automorphisme de \(G\).
On note : \(I=\{f_a\mid a\in G\}\).
Montrer que \((I,{\mathbin{\circ}})\) est un groupe où \(\mathbin{\circ}\) est la loi de composition des applications de \(G\) dans \(G\).
Soit : \[f\ :\ \left\{\begin{array}{rcl} G&\longrightarrow&I\\a&\longmapsto&f_a.\end{array}\right.\] Montrer que \(f\) est un morphisme de \((G,\,{\cdot}\,)\) dans \((I,{\mathbin{\circ}})\).
[structures/ex0536] Un sous-groupe strict d’un groupe peut-il être isomorphe au groupe entier ?
[structures/ex0536]
[structures/ex0046] Montrer que l’application \(x\mapsto x^{-1}\) est un endomorphisme du groupe \(G\) si et seulement si ce dernier est abélien, et que dans ce cas les applications \(x\mapsto x^k\), où \(k\in\mathbf{Z}\), sont toutes des endomorphismes.
[structures/ex0046]
[concours/ex5849] centrale MP 2007 Soit \((G,{\cdot})\) un groupe. Si \(g\in G\), soit \(\varphi_g\) l’application de \(G\) dans \(G\) telle que : \(\forall x\in G\), \(\varphi_g(x)=gxg^{-1}\).
[concours/ex5849]
Montrer, si \(g\in G\), que \(\varphi_g\) est un automorphisme de \(G\).
Montrer que l’application \(\Phi\) qui à \(g\in G\) associe \(\varphi_g\) est un morphisme de \(G\) dans le groupe \(\hbox{Aut}(G)\) des automorphismes de \(G\). Quel est son noyau ?
Donner un exemple où \(\Phi\) n’est pas surjectif.
Soient \(n\in\mathbf{N}^*\) et \(G=\mathfrak{S}_n\). On note \(\mathscr{A}_n\) le sous-groupe de \(G\) constitué des permutations paires. Montrer que \(\mathscr{A}_n\) est stable par les \(\varphi_g\).
On revient au cas général. On pose \(\mathscr{G}=\hbox{Aut}(G)\) et \(\mathscr{H}=\mathop{\mathchoice{\hbox{Im}}{\hbox{Im}}{\mathrm{Im}}{\mathrm{Im}}}\nolimits\Phi\). Si \(\delta\in\mathscr{G}\), \(\mathscr{H}\) est-il stable par \(\varphi_\delta\) ?
[planches/ex6625] mines MP 2021 Les groupes \((\mathbf{Z},{+})\) et \((\mathbf{Q},{+})\) sont-ils isomorphes ?
[planches/ex6625]
Vous pouvez choisir les informations imprimées pour chaque exercice des PDF : référence interne, taille de la famille