[oraux/ex8927] ens paris MP 2016
[oraux/ex8927]
Déterminer les morphismes continus de \((\mathbf{C}^*,{\times})\) dans \((\mathbf{C}^*,{\times})\).
Déterminer les morphismes continus de \((\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{C}),{\times})\) dans \((\mathbf{C}^*,{\times})\).
[examen/ex0202] mines PC 2023 Soit \(g:\mathbf{U}\to\mathbf{U}\) une fonction continue telle que : \(\forall z_1\), \(z_2\in\mathbf{U}\), \(g(z_1z_2)=g(z_1)g(z_2)\). Pour \(t\in\mathbf{R}\), on pose \(f(t)=g(e^{it})\).
[examen/ex0202]
Quelle égalité fonctionnelle vérifie \(f\) ?
En introduisant \(F:t\mapsto\displaystyle\int_0^tf(s)\,\mathrm{d}s\), montrer que \(f\) est de classe \(\mathscr{C}^1\).
Montrer qu’il existe \(\lambda\in\mathbf{R}\) tel que : \(\forall t\in\mathbf{R}\), \(f(t)=e^{i\lambda t}\).
Montrer qu’il existe \(n\in\mathbf{Z}\) tel que : \(\forall z\in\mathbf{U}\), \(g(z)=z^n\).
Déterminer l’ensemble des fonctions continues \(h:\mathbf{C}^*\to\mathbf{C}^*\) telles que : \[\forall z_1,z_2\in\mathbf{C}^*,\quad h(z_1z_2)=h(z_1)h(z_2).\]
[oraux/ex3526] ens paris, ens lyon, ens cachan MP 2011 Déterminer les morphismes continus de \((\mathbf{R},{+})\) dans \((\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{C}),{\times})\). Parmi les morphismes précédents, déterminer ceux qui sont 1-périodiques.
[oraux/ex3526]
[planches/ex9588] polytechnique, espci PC 2023 Soit \(A:\mathbf{R}\to\mathscr{M}_n(\mathbf{C})\) continue telle que \(A(0)=A(1)=I_n\) et \(A(s+t)=A(s)A(t)\) pour tous \(s,t\).
[planches/ex9588]
Donner des exemples non triviaux de telles applications.
Montrer qu’il existe \(P\) inversible et \(\lambda_1\), … , \(\lambda_n\in\mathbf{Z}\) tels que : \[\forall t\in\mathbf{R},\quad A(t)=P\mathop{\mathchoice{\hbox{diag}}{\hbox{diag}}{\mathrm{diag}}{\mathrm{diag}}}\nolimits(e^{2i\pi\lambda_1t},\ldots,e^{2i\pi\lambda_nt})P^{-1}.\]
[concours/ex9206] centrale MP 2006 Quelles sont les fonctions \(f:\mathbf{R}\rightarrow\mathbf{C}\) qui sont continues, de période \(2\pi\) et vérifient \(f(x+y)=f(x)f(y)\) pour tous \(x\) et \(y\) réels ?
[concours/ex9206]
[planches/ex8132] mines MP 2022 Soient \(n\in\mathbf{N}^*\) et \(u:\mathbf{R}\longrightarrow\mathop{\mathchoice{\hbox{SO}}{\hbox{SO}}{\mathrm{SO}}{\mathrm{SO}}}\nolimits_n(\mathbf{R})\) de classe \(\mathscr{C}^1\). Montrer l’équivalence entre les conditions suivantes :
[planches/ex8132]
\(u\) est un morphisme de groupes de \((\mathbf{R},{+})\) dans \((\mathop{\mathchoice{\hbox{SO}}{\hbox{SO}}{\mathrm{SO}}{\mathrm{SO}}}\nolimits_n(\mathbf{R}),{\times})\),
il existe \(A\in\mathscr{A}_n(\mathbf{R})\) telle que \(\forall t\in\mathbf{R}\), \(u(t)=e^{tA}\).
[concours/ex7132] tpe MP 2005 Déterminer les morphismes de groupes dérivables de \((\mathbf{R},{+})\) dans \((\mathbf{C}^*,{\times})\).
[concours/ex7132]
[oraux/ex6889] polytechnique MP 2013 Soit \(\mathbf{K}\) un corps de caractéristique différente de 2.
[oraux/ex6889]
Soient \(n\) un entier naturel non nul et \(G\) un sous-groupe de \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{K})\) tel que \(\forall M\in G\), \(M^2=I_n\). Montrer que \(G\) est abélien, fini et que \(|G|\leqslant 2^n\).
Soit \(m\) et \(n\) deux entiers naturels non nuls. À quelle condition (nécessaire et suffisante) sur \(m\) et \(n\) les groupes \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_m(\mathbf{K})\) et \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{K})\) sont-ils isomorphes ?
[planches/ex1965] mines MP 2017 Soient \(n\in\mathbf{N}^*\) et \(G\) un sous-groupe fini de \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{C})\) tel que, pour tout \(g\in G\), \(g^2=I_n\).
[planches/ex1965]
Montrer que \(G\) est abélien et que son cardinal est une puissance de 2. Quel est le cardinal maximal d’un tel sous-groupe ?
Que peut-on dire de \(m\) et \(n\) dans \(\mathbf{N}^*\) tels que \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_m(\mathbf{C})\) et \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{C})\) soient isomorphes ?
[concours/ex7087] centrale MP 2005
[concours/ex7087]
Soit \(G\) un groupe tel que : \(\forall g\in G\), \(g^2=e\). Montrer que \(G\) est abélien.
Soient \(n\in\mathbf{N}^*\) et \(G\) un sous-groupe de \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{C})\) tel que : \(\forall A\in G\), \(A^2=I_n\). Montrer qu’il existe \(P\) dans \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{C})\) tel que, pour tout \(A\) de \(G\), \(P^{-1}AP\) soit diagonale ; en déduire : \(|G|\leqslant 2^n\).
Montrer que les groupes \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{C})\) et \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_m(\mathbf{C})\) ne sont pas isomorphes si \(n\neq m\).
[planches/ex7956] mines MP 2022
[planches/ex7956]
Soit \((m,n)\in{\mathbf{N}^*}^2\). Montrer que les groupes \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_m(\mathbf{C})\) et \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{C})\) sont isomorphes si et seulement si \(m=n\).
Généraliser en remplaçant \(\mathbf{C}\) par un corps \(\mathbf{K}\).
[planches/ex3441] mines MP 2018
[planches/ex3441]
Montrer que pour toute famille finie de matrices diagonalisables commutant deux à deux, il existe une base de vecteurs propres communs.
Montrer que tout sous-groupe fini de \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{C})\) constitué de symétries est abélien. Déterminer le cardinal maximal d’un tel sous-groupe.
Est-ce que \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{C})\) et \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_p(\mathbf{C})\) sont isomorphes lorsque \(n\neq p\) ?
[concours/ex0834] ens lyon MP 1997 Soient \(L\) et \(K\) deux corps commutatifs de caractéristique différente de \(2\).
[concours/ex0834]
Soit \(G\) un sous-groupe fini de \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(K)\) tel que, pour tout \(A\in G\), \(A^2=\mathchoice{\hbox{Id}}{\hbox{Id}}{\mathrm{Id}}{\mathrm{Id}}_n\). Montrer que \(\mathop{\mathchoice{\hbox{card}}{\hbox{card}}{\mathrm{card}}{\mathrm{card}}}\nolimits G\leqslant 2^n\).
On suppose qu’il existe un homéomorphisme injectif de groupes de \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(K)\) dans \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_m(L)\). Montrer que \(n\leqslant m\).
[concours/ex3705] ens cachan M 1992
[concours/ex3705]
Soit \(K\) un corps commutatif de caractéristique différente de \(2\). Soit \(G\) un sous-groupe de \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(K)\) tel que, pour tout \(A\) de \(G\), \(A^2=\mathchoice{\hbox{Id}}{\hbox{Id}}{\mathrm{Id}}{\mathrm{Id}}\). Que dire du cardinal de \(G\) ?
Étudier l’existence d’isomorphismes entre les groupes suivants : \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(K)\) et \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_m(K)\), entre \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{R})\) et \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_m(\mathbf{Q})\), entre \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{R})\) et \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_m(\mathbf{C})\).
[oraux/ex4180] centrale MP 2011 Soient \(n\) dans \(\mathbf{N}^*\), \(G\) un sous-groupe de \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{C})\) tel que, pour tout \(g\) dans \(G\), on ait : \(g^2=I_n\).
[oraux/ex4180]
Montrer que \(G\) est abélien.
Montrer qu’il existe \(p\) dans \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{C})\) telle que toutes les \(pgp^{-1}\), \(g\in G\) soient diagonales.
Montrer que \(G\) est fini, majorer son cardinal par une expression ne dépendant que de \(n\).
Montrer que si \(m\) est dans \(\mathbf{N}^*\) et \(m\neq n\), les groupes \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_m(\mathbf{C})\) et \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{C})\) ne sont pas isomorphes.
[concours/ex9609] centrale MP 2006
[concours/ex9609]
Soit \(E\) un espace vectoriel complexe de dimension finie et \(\mathscr{U}\) un ensemble d’endomorphismes diagonalisables de \(E\) qui commutent deux à deux. Montrer l’existence d’une base de \(E\) qui diagonalise tout élément de \(\mathscr{U}\).
Soit \(G\) un sous-groupe de \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{C})\) dont tout élément est de carré \(I_n\). Montrer que \(G\) est commutatif et de cardinal \(\leqslant 2^n\).
Montrer que si \(n\) et \(m\) sont distincts, les groupe \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{C})\) et \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_m(\mathbf{C})\) ne sont pas isomorphes.
[concours/ex7783] ens paris MP 2008
[concours/ex7783]
Déterminer les morphismes continus de \((\mathbf{U},{\times})\) dans \((\mathbf{R},{+})\).
Déterminer les morphismes continus de \((\mathbf{U},{\times})\) dans \((\mathbf{C}^*,{\times})\).
[concours/ex6967] ens paris 2004
[concours/ex6967]
Décrire les sous-groupes de \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{C})\) isomorphes à \(\left(\vphantom{|_|}\smash{(\mathbf{Z}/2\mathbf{Z})^p,{+}}\right)\) si \((n,p)\in(\mathbf{N}^*)^2\).
Les groupes \(\left(\vphantom{|_|}\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{C}),{\mathbin{\circ}}\right)\) et \(\left(\vphantom{|_|}\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_m(\mathbf{C}),{\mathbin{\circ}}\right)\) sont-ils isomorphes ?
[planches/ex6422] polytechnique MP 2021
[planches/ex6422]
Soient \(G\) un groupe, \(\chi_1\), … , \(\chi_m\) des morphismes distincts de \(G\) dans \(\mathbf{C}^*\). Montrer que \((\chi_1,\ldots,\chi_m)\) est une famille libre de \(\mathbf{C}^G\).
Déterminer les morphismes de groupes continus de \(\mathbf{U}\) dans \(\mathbf{C}^*\).
[planches/ex9452] polytechnique MP 2023 Déterminer les endomorphismes continus du groupe \(\mathbf{C}^*\).
[planches/ex9452]
[planches/ex4625] polytechnique MP 2019 On fixe un entier \(p\geqslant 3\).
[planches/ex4625]
Soient \(P\) et \(Q\) deux polynômes unitaires de degré \(n\).
On suppose que \(P(X)=p^nQ\left(\displaystyle{X-1\over p}\right)\), que \(Q\) est à coefficients dans \(\mathbf{Z}\) et que les racines de \(P\) sont toutes de module 1. Montrer que \(P=(X-1)^n\).
Montrer que l’ensemble \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{Z})=\{M\in\mathscr{M}_n(\mathbf{Z}),\ \mathop{\mathchoice{\hbox{det}}{\hbox{det}}{\mathrm{det}}{\mathrm{det}}}\nolimits M=\pm1\}\) forme un groupe pour la multiplication.
Soient \(G\) un sous-groupe fini de \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{Z})\), et \((A,B)\in G^2\) tel que \(A=B+pM\) pour une matrice \(M\in\mathscr{M}_n(\mathbf{Z})\). Montrer que \(A=B\).
[planches/ex6447] polytechnique MP 2021
[planches/ex6447]
Soient \(P\in\mathbf{C}[X]\) dont toutes les racines sont de module 1 et \(Q\in\mathbf{Z}[X]\) et \(p\) premier impair. On suppose que \(P\) et \(Q\) sont unitaires de degré 1 et que \(P=p^nQ\left(\displaystyle{X-1\over p}\right)\). Montrer que \(P=(X-1)^n\).
Soient \(C\in\mathscr{M}_n(\mathbf{C})\), \(M\in\mathscr{M}_n(\mathbf{Z})\) et \(p\) premier impair tels que \(C^n=I_n\) et \(C=I_n+pM\). Montrer que \(C=I_n\).
[planches/ex7960] mines MP 2022 On note \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{Z})\) l’ensemble des matrices de \(\mathscr{M}_n(\mathbf{Z})\) inversibles dont l’inverse est aussi à coefficients entiers.
[planches/ex7960]
Montrer que \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{Z})\) est un groupe.
Soit \(A\in\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{Z})\) d’ordre fini. On suppose qu’il existe \(p\geqslant 3\) premier et \(M\in\mathscr{M}_n(\mathbf{Z})\) tels que \(A=I_n+pM\). Montrer que \(\mathop{\mathchoice{\hbox{Sp}}{\hbox{Sp}}{\mathrm{Sp}}{\mathrm{Sp}}}\nolimits A=\{1\}\). Que conclure ?
[planches/ex1432] ens lyon MP 2017 Soient \(p>3\) un nombre premier et \(\varphi:\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{Z})\rightarrow\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{Z}/p\mathbf{Z})\) la réduction canonique modulo \(p\). Soit \(G\) un sous groupe fini de \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{Z})\). Montrer que \(\varphi_{|G}\) est injective.
[planches/ex1432]
[planches/ex4404] ens paris MP 2019 Soit \((G,{\cdot})\) un groupe. Si \(f\) est une fonction de \(G\) dans \(\mathbf{R}\), on dit que \(f\) est un quasi-morphisme s’il existe \(C>0\) tel que \(\forall(x,y)\in G^2\), \(|f(xy)-f(x)-f(y)|\leqslant C\) et que \(f\) est un quasi-caractère si \(\forall(n,x)\in\mathbf{Z}\times G\), \(f(x^n)=nf(x)\). Montrer que, pour tout quasi-morphisme \(M\) de \(G\) dans \(\mathbf{R}\), il existe un unique quasi-morphisme qui est aussi un quasi-caractère \(Q\) de \(G\) dans \(\mathbf{R}\) tel que \(M-Q\) soit bornée.
[planches/ex4404]
[oraux/ex5120] polytechnique, espci PC 2012
[oraux/ex5120]
Les groupes \((\mathbf{C},+)\) et \((\mathbf{C}^*,\times)\) sont-ils isomorphes ?
Les groupes \((\mathbf{Z},+)\) et \((\mathbf{Q}, +)\) sont-ils isomorphes ?
[concours/ex7257] polytechnique, espci PC 2009
[concours/ex7257]
Les groupes \((\mathbf{R},{+})\) et \((\mathbf{R}^*,{\times})\) sont-ils isomorphes ?
Un groupe peut-il être isomorphe à l’un de ses sous-groupes stricts ?
Un espace vectoriel peut-il être isomorphe à l’un de ses sous-espaces vectoriels stricts ?
[ensembles/ex0056] Montrer que \((\mathbf{C}^*,{\times})\) n’est pas isomorphe à \((\mathbf{R}^*,{\times})\), ni à \((\mathbf{C},{+})\), ni à \((\mathbf{R},{+})\).
[ensembles/ex0056]
[oraux/ex4838] ens lyon MP 2012 Les groupes \((\mathbf{R},+)\) et \((\mathbf{R}^*,\times)\) sont-ils isomorphes ?
[oraux/ex4838]
[concours/ex7255] polytechnique, espci PC 2009
[concours/ex7255]
Montrer que \((\mathbf{Z},{+})\) et \((\mathbf{Z}^3,{+})\) ne sont pas isomorphes.
Soit \(U=\{z\in\mathbf{C},\ |z|=1\}\). Montrer que les groupes \((U,{\times})\) et \((\mathbf{R},{+})\) ne sont pas isomorphes.
Montrer que les groupes \((\mathbf{Q},{+})\) et \((\mathbf{R},{+})\) ne sont pas isomorphes.
[structures/ex0485] Dans \(\mathbf{R}\), on définit une loi \(*\) par : \[\forall x\in\mathbf{R}\quad\forall y\in\mathbf{R}\quad x*y=\sqrt[3]{x^3+y^3}.\] Vérifier que \((\mathbf{R},{*})\) est un groupe commutatif isomorphe à \((\mathbf{R},{+})\).
[structures/ex0485]
[structures/ex0669] Montrer que \(*\) est une loi interne sur \(\mathbf{R}\) et donner ses propriétés : \[a*b=\sqrt[3]{a^3+b^3}.\]
[structures/ex0669]
[structures/ex0398] Soient \(n\) un entier impair \({}\geqslant 3\), et \(*\) la loi de composition interne définie dans \(\mathbf{R}\) par \(x*y=\sqrt[n]{x^n+y^n}\). En utilisant l’application \(x\mapsto\sqrt[n]x\), montrer que \((\mathbf{R},{*})\) est un groupe, isomorphe à \((\mathbf{R},{+})\).
[structures/ex0398]
[oraux/ex6497] ens paris MP 2013 Pour \(p\) premier, on note \(\mathscr{Z}_p=\left\{z\in\mathbf{C}\ ;\ \exists k\in\mathbf{N}^*,\ z^{p^k}=1\right\}\).
[oraux/ex6497]
Montrer que \((\mathscr{Z}_p,{\times})\) est un groupe.
Déterminer les sous-groupes de \(\mathscr{Z}_p\). Parmi les sous-groupes non triviaux de \(\mathscr{Z}_p\), y en a-t-il un maximal ?
Soit \(\varphi:\mathscr{Z}_p\rightarrow G\) un morphisme surjectif, où \(G\) est un groupe arbitraire. Montrer que \(G\) est trivial ou isomorphe à \(\mathscr{Z}_p\).
Montrer que la réunion, pour \(p\) premier, des \(\mathscr{Z}_p\) engendre le groupe \(\{z\in\mathbf{C}\ ;\ \exists n\in\mathbf{N}^*,\ z^n=1\}\).
[concours/ex7234] ens paris MP 2009 Parmi les groupes suivants, lesquels sont isomorphes : \((\mathbf{Z},{+})\), \((\mathbf{Z}^2,{+})\), \((\mathbf{Q},{+})\), \((\mathbf{Q}_+^*,{\times})\) ?
[concours/ex7234]
[concours/ex6208] ens paris, ens lyon, ens cachan MP 2006
[concours/ex6208]
Les groupes \((\mathbf{Z},{+})\) et \((\mathbf{Z}^2,{+})\) sont-ils isomorphes ?
Pour quels \((m,n)\in\mathbf{N}^*\) les groupes \((\mathbf{Z}^n,{+})\) et \((\mathbf{Z}^m,{+})\) sont-ils isomorphes ?
[concours/ex6962] ens paris, ens lyon, ens cachan 2004 Parmi les groupes additifs \(\mathbf{Z}\), \(\mathbf{Z}^2\), \(\mathbf{Q}\), \(\mathbf{R}\), en est-il d’isomorphes ?
[concours/ex6962]
[concours/ex6961] ens paris 2004
[concours/ex6961]
Soit \(G\) un sous-groupe de \((\mathbf{Z}^n,{+})\) avec \(n\geqslant 1\). Montrer qu’il existe \(m\in\{0,\ldots,n\}\) tel que \(G\) soit isomorphe à \((\mathbf{Z}^m,{+})\).
A quelle condition \((\mathbf{Z}^n,{+})\) et \((\mathbf{Z}^p,{+})\) sont-ils isomorphes ?
[oraux/ex6524] ens paris MP 2014 Que dire d’un groupe \(G\) dont le groupe des automorphismes est trivial ?
[oraux/ex6524]
[oraux/ex4145] centrale MP 2011 Soit \(G\) un groupe abélien fini. On appelle caractère de \(G\) tout morphisme de groupe \(\chi:G\rightarrow\mathbf{C}^*\). On note \(E\) le \(\mathbf{C}\)-espace vectoriel des applications de \(G\) dans \(\mathbf{C}\).
[oraux/ex4145]
Soit \(\chi\) un caractère de \(G\). Montrer : \(\forall g\in G\), \(|\chi(g)|=1\).
Si \((f,h)\in E^2\), on pose \(\langle f,h\rangle=\displaystyle{1\over|G|}\sum\limits_{g\in G}\overline{f(g)}h(g)\). Vérifier qu’il s’agit d’un produit scalaire.
Montrer que, pour tous caractères \(\chi\) et \(\theta\) de \(G\) et tout \(g\in G\), on a \(\langle\chi,\theta\rangle=\overline{\chi(g)}\theta(g)\langle\chi, \theta\rangle\).
Montrer que la famille des caractères de \(G\) est orthonormale.
Soit \(\widehat G\) l’ensemble des caractères de \(G\). On admet \(|G|=|\widehat G|\). Montrer que les caractères de \(G\) forment une base de \(E\).
[structures/ex0046] Montrer que l’application \(x\mapsto x^{-1}\) est un endomorphisme du groupe \(G\) si et seulement si ce dernier est abélien, et que dans ce cas les applications \(x\mapsto x^k\), où \(k\in\mathbf{Z}\), sont toutes des endomorphismes.
[structures/ex0046]
[planches/ex4617] polytechnique MP 2019 Soit \((G,{\cdot})\) un groupe abélien fini de cardinal \(n\). On note \(\widehat G\) l’ensemble des morphismes de groupes de \((G,{\cdot})\) dans \((\mathbf{C}^*,{\times})\).
[planches/ex4617]
Montrer que \(\widehat G\) est un groupe pour la multiplication ordinaire des fonctions.
Montrer que, si \(\chi\in\widehat G\) n’est pas le morphisme trivial, \(\displaystyle\sum\limits_{g\in G}\chi(g)=0\).
Si \(\chi\) et \(\chi'\) sont deux éléments distincts de \(\widehat G\), montrer que \(\displaystyle\sum\limits_{g\in G}\overline{\chi(g)}\chi'(g)=0\).
Montrer que \(|\widehat G|\leqslant n\).
Si \(x\in G\), soit \(\delta_x\) l’élément de \(\widehat{\widehat G}\) défini par \(\forall\chi\in\widehat G\), \(\delta_x(\chi)=\chi(x)\). Montrer que \(x\longmapsto\delta x\) est un isomorphisme de \(G\) sur \(\widehat{\widehat G}\).
Quel est le cardinal de \(\widehat G\) ?
[structures/ex0355] Soit \((G,{\cdot})\) un groupe ; pour tout \(a\in G\), on note \(\tau_a:G\rightarrow G\) l’application définie par : \[\tau_a(x)=axa^{-1}.\]
[structures/ex0355]
Vérifier que \(\tau_a\) est un automorphisme de \(G\) (appelé automorphisme intérieur associé à \(a\)).
Vérifier : \(\forall(a,b)\in G^2\quad\tau_a\mathbin{\circ}\tau_b=\tau_{ab}\).
[concours/ex7282] centrale PC 2009 Soit \((G,{\cdot})\) un groupe. Montrer que \(G\) est commutatif si et seulement si \(\varphi:g\in G\mapsto g^{-1}\) est un morphisme de groupes.
[concours/ex7282]
[concours/ex5849] centrale MP 2007 Soit \((G,{\cdot})\) un groupe. Si \(g\in G\), soit \(\varphi_g\) l’application de \(G\) dans \(G\) telle que : \(\forall x\in G\), \(\varphi_g(x)=gxg^{-1}\).
[concours/ex5849]
Montrer, si \(g\in G\), que \(\varphi_g\) est un automorphisme de \(G\).
Montrer que l’application \(\Phi\) qui à \(g\in G\) associe \(\varphi_g\) est un morphisme de \(G\) dans le groupe \(\hbox{Aut}(G)\) des automorphismes de \(G\). Quel est son noyau ?
Donner un exemple où \(\Phi\) n’est pas surjectif.
Soient \(n\in\mathbf{N}^*\) et \(G=\mathfrak{S}_n\). On note \(\mathscr{A}_n\) le sous-groupe de \(G\) constitué des permutations paires. Montrer que \(\mathscr{A}_n\) est stable par les \(\varphi_g\).
On revient au cas général. On pose \(\mathscr{G}=\hbox{Aut}(G)\) et \(\mathscr{H}=\mathop{\mathchoice{\hbox{Im}}{\hbox{Im}}{\mathrm{Im}}{\mathrm{Im}}}\nolimits\Phi\). Si \(\delta\in\mathscr{G}\), \(\mathscr{H}\) est-il stable par \(\varphi_\delta\) ?
[planches/ex3155] polytechnique MP 2018 Soit \((G,{\cdot})\) un groupe commutatif fini de cardinal \(N\). On note \(\widehat G\) l’ensemble des morphismes de \((G,{\cdot})\) dans \((\mathbf{C}^*,{\times})\).
[planches/ex3155]
Montrer que \(\widehat G\) est fini et que \((\widehat G,{\times})\) est un groupe, où \(\times\) désigne la multiplication entre fonctions de \(G\) dans \(\mathbf{C}\). On note \(N'\) le cardinal de \(\widehat G\).
Soit \(\varphi:(u,v)\in\mathbf{C}^N\times\mathbf{C}^N\mapsto\displaystyle\sum\limits_{j=1}^N\overline{u_j}v_j\). Montrer que si \((u^1,u^2,\ldots,u^p)\in(\mathbf{C}^N)^p\) vérifie : \(k\neq\ell\Longleftrightarrow\varphi(u^k,u^\ell)=0\) alors \((u^1,\ldots,u^p)\) est libre.
Construire une surjection de \(G\) dans \(\widehat{\widehat G}\) et en déduire que \(N=N'\).
[structures/ex0676] Soit \((G,\,{\cdot}\,)\) un groupe. On considère l’application : \[f_a\ :\ \left\{\begin{array}{rcl} G&\longrightarrow&G\\x&\longmapsto&a\cdot x\cdot a^{-1}\end{array}\right.\qquad\hbox{($a\in G$, fixé).}\]
[structures/ex0676]
Montrer que \(f_a\) est un automorphisme de \(G\).
On note : \(I=\{f_a\mid a\in G\}\).
Montrer que \((I,{\mathbin{\circ}})\) est un groupe où \(\mathbin{\circ}\) est la loi de composition des applications de \(G\) dans \(G\).
Soit : \[f\ :\ \left\{\begin{array}{rcl} G&\longrightarrow&I\\a&\longmapsto&f_a.\end{array}\right.\] Montrer que \(f\) est un morphisme de \((G,\,{\cdot}\,)\) dans \((I,{\mathbin{\circ}})\).
[complexes/ex0279] Caractères d’un groupe
[complexes/ex0279]
Pour chaque groupe \(G\), on munit l’ensemble \(\widehat G=\mathop{\mathscr{L}}\nolimits(G,\mathbf{U})\) des homomorphismes de groupe de \(G\) dans \(\mathbf{U}\) de sa structure naturelle de groupe (si \(f\in\widehat G\) et \(g\in\widehat G\), alors \((fg)(x)=f(x)g(x)\) pour tout \(x\in G\)). Le groupe \(\widehat G\) est appelé groupe des caractères de \(G\).
Si \(G\) est cyclique, démontrer que \(\widehat G\) est cyclique et de même cardinal.
On suppose \(G=G_1\times G_2\times\cdots\times G_p\) où \(G_k\) est cyclique, de cardinal \(n_k\). Démontrer que \(\widehat G\) est isomorphe à \(\widehat G_1\times\widehat G_2\times\cdots\times\widehat G_p\) et en déduire que \(G\) est isomorphe à \(\widehat G\).
Trouver \(\widehat G\) lorsque \(G\) est l’un des groupes suivants :
le groupe du carré ;
le groupe quaternionique ;
le groupe \(\mathfrak{U}_4\) ;
le groupe diédral \(D_n\).
[structures/ex0536] Un sous-groupe strict d’un groupe peut-il être isomorphe au groupe entier ?
[structures/ex0536]
[concours/ex7256] polytechnique, espci PC 2009
[concours/ex7256]
Quels sont les sous-groupes de \(\mathbf{Z}\) ?
Quels sont les automorphismes de \((\mathbf{Z},{+})\) ?
[planches/ex6625] mines MP 2021 Les groupes \((\mathbf{Z},{+})\) et \((\mathbf{Q},{+})\) sont-ils isomorphes ?
[planches/ex6625]
[oraux/ex3614] polytechnique MP 2011 Déterminer tous les endomorphismes continus du groupe \((\mathbf{U},{\times})\).
[oraux/ex3614]
[structures/ex0675] Soit \(f\) un morphisme du groupe \((G,{*})\) dans le groupe \((H,{\top})\). On note \(e\) l’élément neutre de \(G\) et \(e'\) celui de \(H\).
[structures/ex0675]
Montrer que : \[f(e)=e'.\]
Montrer que \(f\) est injectif si, et seulement si : \[f^{-1}(\{e'\})=\{e\}.\]
[planches/ex6395] polytechnique MP 2021 Quels sont les morphismes de \((\mathbf{Q},{+})\) dans \((\mathbf{Q}^*,{\times})\) ?
[planches/ex6395]
[structures/ex0057] Construire un endomorphisme de \((\mathbf{Z}/4\mathbf{Z},{+})\) dont le noyau et l’image sont \(\{0,2\}\).
[structures/ex0057]
[structures/ex0304] Vrai ou faux ?
[structures/ex0304]
Si \(f\) est un morphisme de groupes de \(G\) vers \(G'\) et si \(e'\) est le neutre de \(G'\), on a : \(f\) est injectif si et seulement si \(\mathop{\mathchoice{\hbox{ker}}{\hbox{ker}}{\mathrm{ker}}{\mathrm{ker}}}\nolimits f=\{e'\}\).
[planches/ex7099] centrale MP 2021 Soit \(G\) un groupe. On note \(\widehat G\) l’ensemble des morphismes de groupes de \(G\) dans \((\mathbf{C}^*,{\times})\).
[planches/ex7099]
Rappeler les définitions d’un groupe et d’un morphisme de groupes. Montrer que \(\widehat G\) est un groupe.
Déterminer \(\widehat G\) dans le cas où \(G=\mathbf{Z}/n\mathbf{Z}\).
[structures/ex0734] Soit \(f:G\rightarrow H\) un morphisme de groupes bijectif. Montrer que \(f{}^{-1}:H\rightarrow G\) est aussi un morphisme de groupes, et qu’il est bijectif.
[structures/ex0734]
[structures/ex0603] Pour chaque fonction \(f\) ci-dessous, déterminer si c’est un endomorphisme du groupe \((\mathbf{R}^*,{\times})\) et, le cas échéant, trouver son noyau et son image.
[structures/ex0603]
\(f(x)=|x|\).
\(f(x)=-x\).
\(f(x)=2^x\).
\(f(x)=\sqrt{|x|}\).
[ev.algebre/ex0104] Soit \(\mathscr{H}\) l’ensemble des homothéties d’un espace vectoriel \(E\), de rapport non nul. Montrer que \(\mathscr{H}\), muni de la composition, est un sous-groupe du groupe des bijections de \(E\), isomorphe au groupe multiplicatif \(K^*\).
[ev.algebre/ex0104]
Indication : on prouvera que \(\lambda\mapsto\lambda\,\mathchoice{\hbox{Id}}{\hbox{Id}}{\mathrm{Id}}{\mathrm{Id}}\) est un morphisme de groupes.
[structures/ex0058] Pour chaque fonction \(f\) ci-dessous, déterminer si c’est un endomorphisme du groupe \((\mathbf{R}^*,{\times})\) et, le cas échéant, trouver son noyau et son image.
[structures/ex0058]
\(f(x)=x^2\).
\(f(x)=x^3\).
\(f(x)=\displaystyle{1\over x}\).
\(f(x)=3x\).
[structures/ex0300] Vrai ou faux ?
[structures/ex0300]
Si \(f\) est un morphisme de groupes de \((G,{\cdot})\) vers \((G',{\cdot})\), si \(e\) est le neutre de \(G\) et \(e'\) le neutre de \(G'\), on a : \(f(e)=e'\).
[oraux/ex6505] polytechnique, espci PC 2013 Les groupes \((\mathbf{R},{+})\) et \((\mathbf{Q},{+})\) sont-ils isomorphes ?
[oraux/ex6505]
[planches/ex3423] mines MP 2018 Soient \(m\), \(n\) deux entiers strictement positifs. Trouver tous les morphismes de groupes de \((\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{R}),{\times})\) dans \((\mathbf{Z}/m\mathbf{Z},{+})\).
[planches/ex3423]
[oraux/ex3477] ens paris MP 2011 Déterminer les morphismes de \((\mathbf{Q},{+})\) dans \((\mathbf{Q}_+^*,{\times})\).
[oraux/ex3477]
[concours/ex1382] centrale MP 1998 Trouver tous les morphismes de groupes de \((\mathbf{Z}/n\mathbf{Z},{+})\) dans \((\mathbf{C}^*,{\times})\).
[concours/ex1382]
[structures/ex0302] Vrai ou faux ?
[structures/ex0302]
Si \(f\) est un isomorphisme de groupes alors \(f^{-1}\) est aussi un isomorphisme de groupes.
[ev.algebre/ex0109] Montrer que l’ensemble des homothéties de \(E\) est un sous-espace vectoriel de \(\mathscr{L} E\).
[ev.algebre/ex0109]
[oraux/ex3481] ens paris MP 2011 Soient \(n\in\mathbf{N}\) avec \(n\geqslant 2\), \(G_n=\left\{\displaystyle\sum\limits_{i=1}^{n-1}\lambda_iX^i,\ (\lambda_1,\ldots,\lambda_{n-1})\in\mathbf{C}^{n-1}\hbox{ et }\lambda_1\neq0\right\}\).
[oraux/ex3481]
Si \(P\) et \(Q\) sont dans \(G_n\), montrer qu’il existe un unique \(R\) de \(G_n\) tel que \(R=P\mathbin{\circ} Q\bmod{X^n}\). On note \(R=P\star Q\).
Montrer que \((G_n,{\star})\) est un groupe.
Déterminer un morphisme surjectif de \(G_n\) dans \((\mathbf{C}^*,{\times})\).
[oraux/ex6535] ens paris MP 2014 Soit \(r\geqslant 1\).
[oraux/ex6535]
Construire un groupe \(\Gamma_r\) engendré par \(r\) éléments \(\gamma_1\), … , \(\gamma_r\) tel que, pour tout groupe \(G\) engendré par \(r\) éléments \(g_1\), … , \(g_r\), il existe un unique morphisme \(p\) surjectif de \(\Gamma_r\) dans \(G\) tel que \(p(\gamma_i)=g_i\) pour tout \(i\). On montrera qu’il est unique à isomorphisme près.
Pour \(K\) sous-groupe de \(\Gamma_r\), on note \([\Gamma_r:K]\) le cardinal de \(\Gamma_r/K=\{gK,\ g\in\Gamma_r\}\). Pour \(n\), \(r\geqslant 1\), déterminer le nombre de sous-groupes \(K\) de \(\Gamma_r\) tels que \([\Gamma_r:K]=n\).
[ensembles/ex0125] Quels sont les morphismes de \((\mathbf{Z},+)\) dans \((\mathbf{R}^*,\times)\) ?
[ensembles/ex0125]
[fct.reelles/ex2090] Montrer que \(\mathbf{R}\), muni de la loi de composition \(*\) définie par : \[x*y=x\sqrt{1+y^2}+y\sqrt{1+x^2},\] est un groupe isomorphe à \((\mathbf{R},{+})\).
[fct.reelles/ex2090]
[planches/ex4406] ens saclay, ens rennes MP 2019 Soient \(G\) un groupe fini, \(H\) et \(H'\) deux sous-groupes de \(G\). On dit que \(H\) et \(H'\) sont conjugués dans \(G\) lorsqu’il existe \(g\in G\) tel que \(H=gH'g^{-1}\).
[planches/ex4406]
Montrer que si \(H\) et \(H'\) sont conjugués dans \(G\) alors ils sont isomorphes.
Donner un contre-exemple à l’implication réciproque.
On suppose \(H\) isomorphe à \(H'\).
Vérifier que \(\varphi:g\in G\longmapsto[h\longmapsto gh]\in\mathfrak{S}(G)\) est un morphisme injectif.
Montrer que s’il existe \(\gamma\in\mathfrak{S}(G)\) tel que \(\varphi(H)=\gamma^{-1}\varphi(H')\gamma\) et \(\gamma(1_G)=1_G\), alors \(\gamma\) se restreint à un isomorphisme de \(H\) sur \(H'\).
Montrer qu’il existe un entier \(r\geqslant 1\) et des éléments \(x_1\), … , \(x_r\), \(x'_1\), … , \(x'_r\) de \(G\) tels que \((Hx_i)_{1\leqslant i\leqslant r}\) et \((H'x'_i)_{1\leqslant i\leqslant r}\) partitionnent \(G\).
En déduire que \(\varphi(H)\) et \(\varphi(H')\) sont conjugués dans \(\mathfrak{S}(G)\).
[complexes/ex0285] Soit \(n\in\mathbf{N}^*\). En utilisant l’homomorphisme \(\mathbf{U}\rightarrow\mathbf{U}\), \(z\mapsto z^n\), démontrer que le groupe \(\mathbf{U}\) est isomorphe au groupe quotient \(\mathbf{U}/\mathbf{U}_n\).
[complexes/ex0285]
[planches/ex7512] ens saclay, ens rennes MP 2022 On fixe un corps \(\mathbf{K}\) et on pose \(H=\left\{\pmatrix{1&a&b\cr0&1&c\cr0&0&1},\ (a,b,c)\in\mathbf{K}^3\right\}\).
[planches/ex7512]
Montrer que \(H\) est un sous-espace affine de dimension 3 de \(\mathscr{M}_3(\mathbf{K})\).
Montrer que \(H\) est un sous-groupe de \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_3(\mathbf{K})\), et en déterminer le centre (c’est-à-dire l’ensemble des éléments qui commutent avec tous les éléments de \(H\)).
On note \(L=\left\{\pmatrix{0&a&b\cr0&0&c\cr0&0&0},\ (a,b,c)\in\mathbf{K}^3\right\}\).
On définit \(*\) par \(A*B=A+B+\displaystyle{1\over2}(AB-BA)\) pour \(A\) et \(B\) dans \(L\). Montrer que \((L,{*})\) est un groupe et que l’exponentielle définit un isomorphisme de groupes de \(L\) vers \(H\).
Calculer \(A^n\) pour \(A\in H\) et \(n\in\mathbf{N}\).
On prend \(\mathbf{K}=\mathbf{Z}/2\mathbf{Z}\). Montrer que \(H\) est isomorphe au groupe des isométries vectorielles de \(\mathbf{R}^2\) qui stabilisent le carré \(C:=\{(1,0),(0,1),(-1,0),(0,-1)\}\).
[oraux/ex6540] centrale PC 2014 On munit \(\mathbf{R}^2\) de la loi \(*\) définie par \((x,y)*(a,b)=(x+a,y+b+xa)\).
[oraux/ex6540]
Montrer que \((\mathbf{R}^2,{*})\) est un groupe.
Montrer que \(P=\{(x,y)\in\mathbf{R}^2,\ y=x^2\}\) est un sous-groupe de \((\mathbf{R}^2,{*})\).
Montrer que \(\Phi:(\mathbf{R},{+})\rightarrow(P,{*})\) qui à \(x\) associe \((x,x^2)\) est un isomorphisme.
[oraux/ex6525] ens paris MP 2014 Soit \(\Gamma\) un graphe simple non orienté, c’est-à-dire un couple \((X,A)\) avec \(X\) un ensemble fini non vide, et \(A\) une partie de l’ensemble des paires d’éléments de \(X\). Deux éléments \(x\) et \(y\) de \(\Gamma\) sont dits adjacents lorsque \(\{x,y\}\in A\), et on note alors \(x\sim y\). On note \(\hbox{Aut}(\Gamma)\) l’ensemble des permutations \(\sigma\) de \(X\) telles que \(\forall(x,y)\in X^2\), \(\sigma(x)\sim\sigma(y)\Longleftrightarrow x\sim y\).
[oraux/ex6525]
Montrer que \(\hbox{Aut}(\Gamma)\) est un sous-groupe de \(\mathfrak{S}(X)\).
Trouver \(\Gamma\) tel que \(\hbox{Aut}(\Gamma)\) soit isomorphe à \(\mathbf{Z}/3\mathbf{Z}\).
Soit \(G\) un groupe fini. Montrer qu’il existe un graphe simple non orienté \(\Gamma\) tel que \(G\) soit isomorphe à \(\hbox{Aut}(\Gamma)\).
Indication : introduire le graphe orienté dont l’ensemble des sommets est \(G\) et dans lequel, pour tout \((g,h)\in G^2\), il existe une arête de \(h\) à \(gh\) étiquetée par \(g\).
[structures/ex0301] Vrai ou faux ?
[structures/ex0301]
Si \(f\) est un morphisme de groupes de \((G,{\cdot})\) vers \((G',{\cdot})\), si \(x\) est élément de \(G\), on a : \([f(x)]^{-1}=f(x^{-1})\).
[concours/ex7081] mines PSI 2005 Soit \((G,{\cdot})\) un groupe et \(f\) un endomorphisme de \(G\) tel que : \(\forall(x,y)\in G^2\), \(f(x^2y^3)=x^3y^2\). Montrer que \(G\) est commutatif.
[concours/ex7081]
[ev.algebre/ex1127] Montrer que : \(\left\{\left(\begin{array}{ccc} 1&0&x\\ -x&1&-\displaystyle{x^2\over2}\\0&0&1\end{array}\right)\mid x\in\mathbf{R}\right\}\) est un groupe multiplicatif, isomorphe à \((\mathbf{R},{+})\).
[ev.algebre/ex1127]
[oraux/ex6564] ens lyon MP 2016 On munit \(E=\mathbf{Z}^n\) de sa structure de groupe additif : \(a+b=(a_n+b_n)\) si \(a=(a_n)\) et \(b=(b_n)\). On note \(E^*\) l’ensemble des morphismes de groupes de \(E\) dans \(\mathbf{Z}\). On note \(e_k=(\delta_{k,n})_n\).
[oraux/ex6564]
Montrer que si un élément \(f\) de \(E\) est nul en chaque \(e_k\), alors \(f\) est nulle.
Indication : on pourra considérer des suites du type \((p^na_n)\).
[oraux/ex6526] ens paris MP 2014 Soit \((T,A)\) un arbre, c’est-à-dire un graphe connexe sans cycle. Deux éléments \(x\) et \(y\) de \(T\) sont dits adjacents lorsque \(\{x,y\}\in A\), et on note alors \(x\sim y\). On note \(\hbox{Aut}(T)\) le groupe des permutations \(\sigma\) de \(T\) telles que \(\forall(x,y)\in T^2\), \(x\sim y\Longleftrightarrow\sigma(x)\sim\sigma(y)\).
[oraux/ex6526]
Pour \((x,y)\in T^2\), on note \(d(x,y)\) la distance de \(x\) à \(y\) dans l’arbre \(T\), définie comme le plus petit entier \(n\) tels qu’il existe une suite \((x_0,\ldots,x_n)\) telle que \(x_0=x\), \(y=x_n\) et \(x_k\sim x_{k+1}\) pour tout \(k\in[[0,n-1]]\).
Soit \(\varphi:G\rightarrow\hbox{Aut}(T)\) un morphisme de groupes. On fixe un point \(s\in T\). On pose \(f:g\in G\mapsto d(s,\varphi(g)[s])\). Montrer que \(f\) vérifie les deux propriétés suivantes :
\(\forall g\in G\), \(f(g^{-1})=f(g)\) ;
\(\forall n\in\mathbf{N}^*\), \(\forall(g_1,\ldots,g_n)\in G^n\), \(\forall(z_1,\ldots,z_n)\in\mathbf{C}^n\), \[\sum\limits_{k=1}^nz_k=0\Longrightarrow\sum\limits_{1\leqslant i,j\leqslant n}z_i\overline{z_j}f(g_ig_j^{-1})\in\mathbf{R}_-.\]
Pour la seconde, on pourra introduire l’espace hermitien \(\mathscr{F}(A,\mathbf{C})\) et la fonction \(\psi\) qui à tout élément de \(G\) associe l’indicatrice de l’ensemble des arêtes figurant dans le chemin minimal joignant \(s\) à \(f(g)[s]\).
[ev.algebre/ex1033] Soit \(F=\Bigl\{A\in\mathscr{M}_2(\mathbf{R})\mid\exists a\in\mathbf{R}^*\quad A=\left(\begin{array}{cc} a&0\\0&1\end{array}\right)\Bigr\}\).
[ev.algebre/ex1033]
Montrer que \((F,{\times})\) est un groupe commutatif.
Montrer que \(\varphi:\mathbf{R}^*\rightarrow F\), \(a\mapsto\left(\begin{array}{cc} a&0\\0&1\end{array}\right)\) est un isomorphisme de groupes.
[concours/ex6944] ens paris 2004 Soient \(G\) un groupe, \(H\) un sous-groupe abélien de \(G\), \(x_1\), … , \(x_n\) des éléments de \(G\) tels que \(G\) soit réunion disjointe des \(x_iH=\{x_in,\ h\in\ H\}\) pour \(1\leqslant i\leqslant n\). Si \(g\in G\) et \(i\in\{1,\ldots,n\}\), \(gx_i\) s’écrit d’une unique façon \(x_jh\) avec \(1\leqslant j\leqslant n\) et \(h\in H\). On écrit \(j=g.i\) et \(h=h_{i,g.i}\).
[concours/ex6944]
On pose alors \(V(g)=\mathop{\prod}\limits_{i=1}^nh_{i,g.i}\). Montrer que \(V\) est un morphisme de \(G\) dans \(H\) indépendant du choix des \(x_i\).
[concours/ex2426] ens lyon M 1995 Soient \(n\) et \(m\) dans \(\mathbf{N}^*\) tels que \(n|m\). Trouver une surjection naturelle de \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_2(\mathbf{Z}/m\mathbf{Z})\) vers \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_2(\mathbf{Z}/n\mathbf{Z})\).
[concours/ex2426]
Indication : on pourra d’abord étudier le cas où \(m\) et \(n\) ont les mêmes diviseurs premiers.
[structures/ex0299] Vrai ou faux ?
[structures/ex0299]
Un endomorphisme de groupes est un automorphisme de groupes bijectif.
[structures/ex0530] Soit \(E\) un ensemble, et \(*\) une opération dans \(E\). On définit \(\overline*\) par : \[\forall(x,y)\in E^2\qquad x\mathbin{\overline*}y=y*x.\]
[structures/ex0530]
Montrer que \((E,{\overline*})\) peut ne pas être isomorphe à \((E,{*})\).
Montrer que, si \((E,{*})\) est un groupe, alors \((E,{\overline*})\) est isomorphe à \((E,{*})\).
[planches/ex7513] ens lyon MP 2022 On prend pour \(\mathbf{K}\) l’un des corps \(\mathbf{R}\) ou \(\mathbf{C}\).
[planches/ex7513]
Déterminer les éléments de \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{K})\) qui commutent avec tous les autres.
Étant donné \(n\in\mathbf{N}^*\), on note \(\mathbf{P}^n(\mathbf{K})\) l’ensemble quotient de \(\mathbf{K}^{n+1}\setminus\{0\}\) pour la relation de colinéarité entre vecteurs. On choisit un élément \(\infty\) hors de \(\mathbf{K}\). Montrer que l’on définit une bijection de \(\mathbf{P}^1(\mathbf{K})\) sur \(\mathbf{K}\cup\{\infty\}\) en associant à la classe de \((a,b)\) le nombre \(\displaystyle{a\over b}\) si \(b\neq0\), et \(\infty\) si \(b=0\).
On note \(\hbox{PGL}_n(\mathbf{K})\) le quotient de \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{K})\) par la relation d’équivalence définie comme suit : \(P\sim Q\Longleftrightarrow\exists\alpha\in\mathbf{K}^*\ :\ P=\alpha Q\). Montrer qu’il existe une unique structure de groupe sur \(\hbox{PGL}_n(\mathbf{K})\) faisant de la projection canonique \(P\longmapsto[P]\) un morphisme de \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{K})\) dans \(\hbox{PGL}_n(\mathbf{K})\). On munit \(\hbox{PGL}_n(\mathbf{K})\) de cette structure de groupe dans toute la suite de l’énoncé.
Montrer que, pour \(P\in\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{K})\) et \(X\in\mathbf{K}^n\), la classe de colinéarité du vecteur \(PX\) ne dépend que de la classe de \(P\) modulo \(\sim\) et de la classe de colinéarité de \(X\). On obtient ainsi une fonction \(\rho:\hbox{PGL}_n(\mathbf{K})\times\mathbf{P}^{n-1}(\mathbf{K})\longrightarrow\mathbf{P}^{n-1}(\mathbf{K})\) envoyant systématiquement le couple \(([P],[X])\) sur \([PX]\). On notera \(g.x:=\rho(g,x)\) pour \(g\in\hbox{PGL}_n(\mathbf{K})\) et \(x\in\mathbf{P}^{n-1}(\mathbf{K})\).
Soit \(g\in\hbox{PGL}_2(\mathbf{K})\) représenté par la matrice \(\pmatrix{a&b\cr c&d}\). Montrer que, via l’identification de la question 2 entre \(\mathbf{P}^1(\mathbf{K})\) et \(\mathbf{K}\cup\{\infty\}\), l’application \(x\longmapsto g.x\) s’identifie à l’homographie \(\rho_g:z\in\mathbf{K}\cup\{\infty\}\longmapsto\displaystyle{az+b\over cz+d}\in\mathbf{K}\cup\{\infty\}\), en convenant que \(\displaystyle{az+b\over cz+d}=\infty\) si \(z\in\mathbf{K}\) et \(cz+d=0\), \(\displaystyle{a\infty+b\over c\infty+d}={a\over c}\) si \(c\in\mathbf{K}^*\), et \(\displaystyle{a\infty+b\over c\infty+d}=\infty\) si \(c=0\).
Soit \(a\), \(b\), \(c\) des éléments distincts de \(\mathbf{P}^1(\mathbf{K})\), et \(a'\), \(b'\), \(c'\) des éléments distincts de \(\mathbf{P}^1(\mathbf{K})\). Montrer qu’il existe \(g\in\hbox{PGL}_2(\mathbf{K})\) tel que \((a',b',c')=(g.a,g.b,g.c)\).
Pour \(x\in\mathbf{P}^1(\mathbf{K})\), on note \(S_x:=\{g\in\hbox{PGL}_2(\mathbf{K})\ :\ g.x=x\}\). Expliciter \(S_0\), \(S_\infty\), \(S_0\cap S_\infty\) et \(S_0\cap S_\infty\cap S_1\) (avec l’identification précédente entre \(\mathbf{K}\cup\{\infty\}\) et \(\mathbf{P}^1(\mathbf{K})\)).
Montrer que, dans le groupe \(\hbox{PGL}_2(\mathbf{C})\), tout élément d’ordre 2 est conjugué à l’élément dont l’homographie associée est \(z\longmapsto-z\).
[structures/ex0041] Si \(f\) est une bijection de \(E\) dans \(F\), alors la fonction \[\Phi:u\mapsto f\circ u\circ f{}^{-1}\] est un isomorphisme de \(\mathfrak{S}_E\) dans \(\mathfrak{S}_F\).
[structures/ex0041]
[oraux/ex3486] ens paris, ens lyon, ens cachan MP 2011
[oraux/ex3486]
Déterminer \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_2(\mathbf{Z}/2\mathbf{Z})\). Quelle est sa structure algébrique ?
À quel groupe est-il isomorphe ?
[planches/ex4618] polytechnique MP 2019
[planches/ex4618]
Montrer que \(\mathop{\mathchoice{\hbox{SL}}{\hbox{SL}}{\mathrm{SL}}{\mathrm{SL}}}\nolimits_2(\mathbf{Z})\) est un sous-groupe de \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_2(\mathbf{R})\).
Soit \(P\) l’ensemble des \(z\in\mathbf{C}\) tels que \(\mathop{\mathchoice{\hbox{Im}}{\hbox{Im}}{\mathrm{Im}}{\mathrm{Im}}}\nolimits(z)>0\). Si \(M=\pmatrix{a&b\cr c&d}\) est dans \(\mathop{\mathchoice{\hbox{SL}}{\hbox{SL}}{\mathrm{SL}}{\mathrm{SL}}}\nolimits_2(\mathbf{Z})\) et si \(z\) est dans \(P\), montrer que \(M.z=\displaystyle{az+b\over cz+d}\) est dans \(P\).
Montrer que, si \(M\) et \(M'\) sont dans \(\mathop{\mathchoice{\hbox{SL}}{\hbox{SL}}{\mathrm{SL}}{\mathrm{SL}}}\nolimits_2(\mathbf{Z})\) et \(z\) dans \(P\), \(M'.(M.z)=M'M.z\).
Soient \(S=\pmatrix{0&-1\cr1&0}\) et \(T=\pmatrix{1&1\cr0&1}\), \(G\) le sous-groupe de \(\mathop{\mathchoice{\hbox{SL}}{\hbox{SL}}{\mathrm{SL}}{\mathrm{SL}}}\nolimits_2(\mathbf{Z})\) engendré par \(S\) et \(T\). Montrer que, si \(z\in P\), il existe \(M\in G\) tel que, si \(z'=M.z\), on ait \(|z'|\geqslant 1\) et \(|\mathop{\mathchoice{\hbox{Re}}{\hbox{Re}}{\mathrm{Re}}{\mathrm{Re}}}\nolimits(z')|\leqslant\displaystyle{1\over2}\).
[concours/ex6890] ens paris, ens lyon, ens cachan 2003 Trouver les groupes isomorphes parmi \((\mathbf{R},{+})\), \((\mathbf{Z}^2,{+})\), \((\mathbf{Q},{+})\), \((\mathop{\mathchoice{\hbox{SL}}{\hbox{SL}}{\mathrm{SL}}{\mathrm{SL}}}\nolimits_2(\mathbf{F}_3),{\mathbin{\circ}})\), \((\mathbf{Z}/6\mathbf{Z},{+})\), \((\mathbf{Z}/2\mathbf{Z}\times\mathbf{Z}/3\mathbf{Z},{+})\), \(\left(\vphantom{|_|}\smash{(\mathbf{Z}/7\mathbf{Z})^*},{\times}\right)\), \((\mathscr{S}_3,{\mathbin{\circ}})\).
[concours/ex6890]
[concours/ex6984] mines 2004 Donner deux exemples de groupes d’ordre 9 non isomorphes.
[concours/ex6984]
[planches/ex4403] ens paris MP 2019 Soient \(G\) un groupe, \(\delta\in\mathbf{R}_+^*\), \(E_\delta\) l’ensemble des applications \(f\) de \(G\) dans \(\mathbf{R}\) telles que \(\forall(x,y)\in G^2\), \(|f(xy)-f(x)f(y)|\leqslant\delta\).
[planches/ex4403]
Montrer que, si \(f\in E_\delta\) n’est pas bornée, alors \(\forall(x,y)\in G^2\), \(f(xy)=f(x)f(y)\).
Trouver \(C>0\) tel que, pour toute \(f\in E_\delta\), on ait soit \(\forall x\in G\), \(|f(x)|\leqslant C\), soit \(\forall(x,y)\in G^2\), \(f(xy)=f(x)f(y)\).
[structures/ex0051] Soit \(\mathbf{R}^*\) l’ensemble des réels non nuls, et \(E=\mathbf{R}^*\times\mathbf{R}\).
[structures/ex0051]
Soit \(\triangle\) la loi définie sur \(E\) par \[\forall((a,b),(c,d))\in E^2\quad(a,b)\triangle(c,d)=(ac,ad+b).\] Montrer que \((E,{\triangle})\) est un groupe.
Pour \((a,b)\in E\), soit \(f_{a,b}\) la fonction de \(\mathbf{R}\) dans \(\mathbf{R}\) définie par \[f_{a,b}(x)=ax+b,\] et soit \[\mathfrak{S}=\{f_{a,b},(a,b)\in E\}.\] Montrer que \(\mathfrak{S}\) est un groupe de permutations de \(\mathbf{R}\) isomorphe au groupe \((E,{\triangle})\) de la question précédente.
[planches/ex7511] ens paris, ens lyon, ens saclay, ens rennes MP 2022 Soit \(n\) et \(m\) dans \(\mathbf{N}^*\). On munit \(\mathbf{C}\) de sa structure canonique d’espace euclidien.
[planches/ex7511]
Expliciter les \(\phi\) dans \(\mathscr{O}(\mathbf{C})\) tels que \(\phi(\mathscr{U}_n)=\mathscr{U}_n\). On note \(\mathbf{D}_{2n}\) l’ensemble ainsi formé. C’est un sous-groupe de \(\mathscr{O}(\mathbf{C})\).
Dénombrer les morphismes de groupes de \(\mathbf{D}_{2m}\) vers \(\mathbf{D}_{2n}\).
Montrer que tout automorphisme du groupe \(\mathfrak{S}_3\) est de la forme \(g\longmapsto aga^{-1}\) pour un \(a\in\mathfrak{S}_3\).
[complexes/ex0280] On munit l’ensemble \(\widehat{\mathbf{Q}}=\mathop{\mathscr{L}}\nolimits(\mathbf{Q},\mathbf{U})\) des homomorphismes de groupe de \((\mathbf{Q},{+})\) dans \(\mathbf{U}\) de sa structure naturelle de groupe (si \(f\in\widehat{\mathbf{Q}}\) et \(g\in\widehat{\mathbf{Q}}\), alors \((fg)(x)=f(x)g(x)\) pour tout \(x\in\mathbf{Q}\)).
[complexes/ex0280]
Pour chaque \(\lambda\in\mathbf{R}\), on considère l’élément \(f_\lambda\) de \(\widehat{\mathbf{Q}}\) défini par : \[\forall x\in\mathbf{Q}\quad f_\lambda(x)=e^{i\lambda x}.\] Étudier l’homomorphisme du groupe \((\mathbf{R},{+})\) dans le groupe \(\widehat{\mathbf{Q}}\).
[structures/ex0060] Soit \(\mathscr{C}\) l’ensemble des fonctions continues de \([0,1]\) dans \(\mathbf{R}\).
[structures/ex0060]
Trouver dans quels cas \(F\) est-elle un homomorphisme de \((\mathscr{C},{+})\) dans \((\mathbf{R},{+})\), où \(F(f)\) est :
\(f(1)\).
\(|f(0)|\).
\(\displaystyle{\int\limits_0^1f(x)\,dx}\).
\(\displaystyle{ {\pi\over3}\int_0^1f(x)\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits{\pi x\over6}\,dx}\).
\(\displaystyle{\int_0^1\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits{\pi f(x)\over6}\,dx}\).
\(\displaystyle{\int_0^1f\left(\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits{\pi x\over6}\right)\,dx}\).
\(\displaystyle{\int\limits_0^1\int\limits_0^1f(x)\,f(y)\,dy\,dx}\).
\(\displaystyle{\int\limits_0^1\int\limits_0^1f(xy)\,dy\,dx}\).
\(\displaystyle{2\int\limits_0^1\int\limits_0^xf(y)\,dy\,dx}\).
\(\displaystyle{-f(0)+\int\limits_{-2}^0f(e^x)\,dx}\).
Pour chacun des \(7\) homomorphismes de la liste précédente, montrer que \(F(\mathbf{c})=c\) pour tout \(c\in\mathbf{R}\), où \(\mathbf{c}\) est la fonction constante égale à \(c\), et qu’il existe un unique réel \(m\) tel que \(F(I_J-\mathbf{m})=0\). En déduire qu’il n’y a pas deux homomorphismes de la liste qui aient le même noyau.
Montrer que, si \(F\) est un homomorphisme quelconque de \((\mathscr{C},{+})\) dans \((\mathbf{R},{+})\) tel que \(F(\mathbf{c})=c\) pour tout \(c\in\mathbf{R}\), alors \(\mathscr{C}\) est la somme directe du noyau de \(F\) et du sous-groupe des fonctions constantes. En déduire qu’il existe beaucoup de sous-groupes \(F\) de \(\mathscr{C}\) tels que \(\mathscr{C}\) soit la somme directe de \(F\) et du sous-groupe des fonctions constantes.
[structures/ex0678] Soit \((G,\,{\cdot}\,)\) un groupe et : \[f\ :\ \left\{\begin{array}{rcl} G&\longrightarrow&G\\x&\longmapsto&x^2\end{array}\right.\] Montrer que \(f\) est un morphisme si et seulement si \(G\) est abélien.
[structures/ex0678]
[concours/ex1330] ens paris MP 1998 Déterminer les morphismes injectifs de \((\mathbf{Z},{+})\) dans \((\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_2(\mathbf{Z}),{\times})\).
[concours/ex1330]
[planches/ex9408] polytechnique MP 2023
[planches/ex9408]
Soit \(s:\mathbf{R}^*\to\mathbf{R}^*\), \(t\mapsto t^{-1}\). Déterminer le groupe engendré par \(s\).
On définit les applications \(s_1:(t,u)\in\mathbf{R}^*\times\mathbf{R}^*\mapsto(t^{-1},tu)\in\mathbf{R}^*\times\mathbf{R}^*\) et ??
Montrer que le sous-groupe qu’elles engendrent est isomorphe à \(\mathfrak{S}_3\).
Retrouver le résultat de la question précédente en considérant le quotient \(A\) de \((\mathbf{R}^*)^3\) par la relation de colinéarité, la bijection \(f:A\rightarrow(\mathbf{R}^*)^2\) qui associe à la classe de \((x_1,x_2,x_3)\) le couple \((x_1/x_2,x_2/x_3)\), et enfin les permutations de \(A\) induites par \((x_1,x_2,x_3)\mapsto(x_2,x_1,x_3)\) et \((x_1,x_2,x_3)\mapsto(x_1,x_3,x_2)\).
Soit \(n\geqslant 3\). Déterminer le groupe engendré par les bijections \((s_i)_{1\leqslant i\leqslant n}\) de \((\mathbf{R}^*)^n\) définies par \(s_i(t_1,\ldots,t_n)=(t_1,\ldots,t_{i-2},t_{i-1}\times t_i,t_i^{-1},t_i\times t_{i+1},t_{i+2},\ldots,t_n)\) si \(1<i<n\), \(s_1(t_1,\ldots,t_n)=(t_1^{-1},t_1\times t_2,t_3,\ldots,t_n)\) et \(s_n(t_1,\ldots,t_n)=(t_1,\ldots,t_{n-2},t_{n-1}\times t_n,t_n^{-1})\).
Indication : Considérer \(f:(\mathbf{R}^*)^{n+1}\to(\mathbf{R}^*)^n\) définie par \(f(t_1,\ldots,t_{n+1})=\displaystyle\left(\frac{t_2}{t_1},\ldots,\frac{t_{n+1}}{t_n}\right)\) et chercher des bijections simples \(s_i'\) de \((\mathbf{R}^*)^{n+1}\) telles que \(s_i\mathbin{\circ} f=f\mathbin{\circ} s_i'\).
[structures/ex0397] Soit \((G,{\cdot})\) un groupe.
[structures/ex0397]
Montrer que l’ensemble des automorphismes de \(G\), muni de la loi \(\mathbin{\circ}\), est un groupe, noté \(\hbox{aut}(G)\).
Soit \(H\) un sous-groupe de \(\hbox{aut}(G)\), et : \[\begin{array}{rcl} \varphi:G&\longrightarrow&\mathfrak{P}(G)\\ x&\longmapsto&\{f(x)\mid f\in H\}\ ;\end{array}\] \(\varphi(x)\) est appelé l’orbite de \(x\) sous \(H\). Vérifier que \(\varphi(G)\) est une partition de \(G\).
[concours/ex6519] mines MP 2006 On note \(V\) l’ensemble des matrices à coefficients entiers ayant une forme du type \(\left(\begin{array}{cccc} a&b&c&d\\d&a&b&c\\c&d&a&b\\b&c&d&a\end{array}\right)\) et \(G\) l’ensemble des \(M\in V\) inversibles dans \(\mathscr{M}_4(\mathbf{R})\) et dont l’inverse est dans \(V\).
[concours/ex6519]
Quelle est la structure de \(G\) ?
Soit \(M\in V\). Montrer que \(M\in G\) si et seulement si \(\mathop{\mathchoice{\hbox{det}}{\hbox{det}}{\mathrm{det}}{\mathrm{det}}}\nolimits M=\pm1\).
Donner un groupe standard isomorphe à \(G\) muni du produit.
[complexes/ex0281] On munit l’ensemble \(\widehat{\mathbf{Q}_+^*}=\mathop{\mathscr{L}}\nolimits(\mathbf{Q}_+^*,\mathbf{U})\) des homomorphismes de groupe de \((\mathbf{Q}_+^*,{\times})\) dans \(\mathbf{U}\) de sa structure naturelle de groupe (si \(f\in\widehat{\mathbf{Q}}_+^*\) et \(g\in\widehat{\mathbf{Q}}_+^*\), alors \((fg)(x)=f(x)g(x)\) pour tout \(x\in\mathbf{Q}\)).
[complexes/ex0281]
Montrer que les groupes abéliens \(\widehat{\mathbf{Q}_+^*}\) et \((\mathbf{R}/2\pi\mathbf{Z})^\mathbf{N}\) sont isomorphes.
[structures/ex0050] Écrire la table de multiplication du groupe des (\(10\)) symétries d’un pentagone régulier. Construire un isomorphisme de ce groupe dans un sous-groupe de \(\mathfrak{S}_5\).
[structures/ex0050]
Vous pouvez choisir la typographie des énoncés : HTML (MathJax, plus joli) ou sous forme d'image (GIF, plus rapide)