[oraux/ex6540] centrale PC 2014 On munit \(\mathbf{R}^2\) de la loi \(*\) définie par \((x,y)*(a,b)=(x+a,y+b+xa)\).
[oraux/ex6540]
Montrer que \((\mathbf{R}^2,{*})\) est un groupe.
Montrer que \(P=\{(x,y)\in\mathbf{R}^2,\ y=x^2\}\) est un sous-groupe de \((\mathbf{R}^2,{*})\).
Montrer que \(\Phi:(\mathbf{R},{+})\rightarrow(P,{*})\) qui à \(x\) associe \((x,x^2)\) est un isomorphisme.
[planches/ex4406] ens saclay, ens rennes MP 2019 Soient \(G\) un groupe fini, \(H\) et \(H'\) deux sous-groupes de \(G\). On dit que \(H\) et \(H'\) sont conjugués dans \(G\) lorsqu’il existe \(g\in G\) tel que \(H=gH'g^{-1}\).
[planches/ex4406]
Montrer que si \(H\) et \(H'\) sont conjugués dans \(G\) alors ils sont isomorphes.
Donner un contre-exemple à l’implication réciproque.
On suppose \(H\) isomorphe à \(H'\).
Vérifier que \(\varphi:g\in G\longmapsto[h\longmapsto gh]\in\mathfrak{S}(G)\) est un morphisme injectif.
Montrer que s’il existe \(\gamma\in\mathfrak{S}(G)\) tel que \(\varphi(H)=\gamma^{-1}\varphi(H')\gamma\) et \(\gamma(1_G)=1_G\), alors \(\gamma\) se restreint à un isomorphisme de \(H\) sur \(H'\).
Montrer qu’il existe un entier \(r\geqslant 1\) et des éléments \(x_1\), … , \(x_r\), \(x'_1\), … , \(x'_r\) de \(G\) tels que \((Hx_i)_{1\leqslant i\leqslant r}\) et \((H'x'_i)_{1\leqslant i\leqslant r}\) partitionnent \(G\).
En déduire que \(\varphi(H)\) et \(\varphi(H')\) sont conjugués dans \(\mathfrak{S}(G)\).
[fct.reelles/ex2090] Montrer que \(\mathbf{R}\), muni de la loi de composition \(*\) définie par : \[x*y=x\sqrt{1+y^2}+y\sqrt{1+x^2},\] est un groupe isomorphe à \((\mathbf{R},{+})\).
[fct.reelles/ex2090]
[concours/ex2426] ens lyon M 1995 Soient \(n\) et \(m\) dans \(\mathbf{N}^*\) tels que \(n|m\). Trouver une surjection naturelle de \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_2(\mathbf{Z}/m\mathbf{Z})\) vers \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_2(\mathbf{Z}/n\mathbf{Z})\).
[concours/ex2426]
Indication : on pourra d’abord étudier le cas où \(m\) et \(n\) ont les mêmes diviseurs premiers.
[structures/ex0060] Soit \(\mathscr{C}\) l’ensemble des fonctions continues de \([0,1]\) dans \(\mathbf{R}\).
[structures/ex0060]
Trouver dans quels cas \(F\) est-elle un homomorphisme de \((\mathscr{C},{+})\) dans \((\mathbf{R},{+})\), où \(F(f)\) est :
\(f(1)\).
\(|f(0)|\).
\(\displaystyle{\int\limits_0^1f(x)\,dx}\).
\(\displaystyle{ {\pi\over3}\int_0^1f(x)\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits{\pi x\over6}\,dx}\).
\(\displaystyle{\int_0^1\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits{\pi f(x)\over6}\,dx}\).
\(\displaystyle{\int_0^1f\left(\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits{\pi x\over6}\right)\,dx}\).
\(\displaystyle{\int\limits_0^1\int\limits_0^1f(x)\,f(y)\,dy\,dx}\).
\(\displaystyle{\int\limits_0^1\int\limits_0^1f(xy)\,dy\,dx}\).
\(\displaystyle{2\int\limits_0^1\int\limits_0^xf(y)\,dy\,dx}\).
\(\displaystyle{-f(0)+\int\limits_{-2}^0f(e^x)\,dx}\).
Pour chacun des \(7\) homomorphismes de la liste précédente, montrer que \(F(\mathbf{c})=c\) pour tout \(c\in\mathbf{R}\), où \(\mathbf{c}\) est la fonction constante égale à \(c\), et qu’il existe un unique réel \(m\) tel que \(F(I_J-\mathbf{m})=0\). En déduire qu’il n’y a pas deux homomorphismes de la liste qui aient le même noyau.
Montrer que, si \(F\) est un homomorphisme quelconque de \((\mathscr{C},{+})\) dans \((\mathbf{R},{+})\) tel que \(F(\mathbf{c})=c\) pour tout \(c\in\mathbf{R}\), alors \(\mathscr{C}\) est la somme directe du noyau de \(F\) et du sous-groupe des fonctions constantes. En déduire qu’il existe beaucoup de sous-groupes \(F\) de \(\mathscr{C}\) tels que \(\mathscr{C}\) soit la somme directe de \(F\) et du sous-groupe des fonctions constantes.
[concours/ex6890] ens paris, ens lyon, ens cachan 2003 Trouver les groupes isomorphes parmi \((\mathbf{R},{+})\), \((\mathbf{Z}^2,{+})\), \((\mathbf{Q},{+})\), \((\mathop{\mathchoice{\hbox{SL}}{\hbox{SL}}{\mathrm{SL}}{\mathrm{SL}}}\nolimits_2(\mathbf{F}_3),{\mathbin{\circ}})\), \((\mathbf{Z}/6\mathbf{Z},{+})\), \((\mathbf{Z}/2\mathbf{Z}\times\mathbf{Z}/3\mathbf{Z},{+})\), \(\left(\vphantom{|_|}\smash{(\mathbf{Z}/7\mathbf{Z})^*},{\times}\right)\), \((\mathscr{S}_3,{\mathbin{\circ}})\).
[concours/ex6890]
[oraux/ex6564] ens lyon MP 2016 On munit \(E=\mathbf{Z}^n\) de sa structure de groupe additif : \(a+b=(a_n+b_n)\) si \(a=(a_n)\) et \(b=(b_n)\). On note \(E^*\) l’ensemble des morphismes de groupes de \(E\) dans \(\mathbf{Z}\). On note \(e_k=(\delta_{k,n})_n\).
[oraux/ex6564]
Montrer que si un élément \(f\) de \(E\) est nul en chaque \(e_k\), alors \(f\) est nulle.
Indication : on pourra considérer des suites du type \((p^na_n)\).
[complexes/ex0280] On munit l’ensemble \(\widehat{\mathbf{Q}}=\mathop{\mathscr{L}}\nolimits(\mathbf{Q},\mathbf{U})\) des homomorphismes de groupe de \((\mathbf{Q},{+})\) dans \(\mathbf{U}\) de sa structure naturelle de groupe (si \(f\in\widehat{\mathbf{Q}}\) et \(g\in\widehat{\mathbf{Q}}\), alors \((fg)(x)=f(x)g(x)\) pour tout \(x\in\mathbf{Q}\)).
[complexes/ex0280]
Pour chaque \(\lambda\in\mathbf{R}\), on considère l’élément \(f_\lambda\) de \(\widehat{\mathbf{Q}}\) défini par : \[\forall x\in\mathbf{Q}\quad f_\lambda(x)=e^{i\lambda x}.\] Étudier l’homomorphisme du groupe \((\mathbf{R},{+})\) dans le groupe \(\widehat{\mathbf{Q}}\).
[concours/ex6944] ens paris 2004 Soient \(G\) un groupe, \(H\) un sous-groupe abélien de \(G\), \(x_1\), … , \(x_n\) des éléments de \(G\) tels que \(G\) soit réunion disjointe des \(x_iH=\{x_in,\ h\in\ H\}\) pour \(1\leqslant i\leqslant n\). Si \(g\in G\) et \(i\in\{1,\ldots,n\}\), \(gx_i\) s’écrit d’une unique façon \(x_jh\) avec \(1\leqslant j\leqslant n\) et \(h\in H\). On écrit \(j=g.i\) et \(h=h_{i,g.i}\).
[concours/ex6944]
On pose alors \(V(g)=\mathop{\prod}\limits_{i=1}^nh_{i,g.i}\). Montrer que \(V\) est un morphisme de \(G\) dans \(H\) indépendant du choix des \(x_i\).
[structures/ex0678] Soit \((G,\,{\cdot}\,)\) un groupe et : \[f\ :\ \left\{\begin{array}{rcl} G&\longrightarrow&G\\x&\longmapsto&x^2\end{array}\right.\] Montrer que \(f\) est un morphisme si et seulement si \(G\) est abélien.
[structures/ex0678]
Vous pouvez produire plusieurs PDF en répartissant les exercices choisis