[concours/ex6984] mines 2004 Donner deux exemples de groupes d’ordre 9 non isomorphes.
[concours/ex6984]
[oraux/ex6540] centrale PC 2014 On munit \(\mathbf{R}^2\) de la loi \(*\) définie par \((x,y)*(a,b)=(x+a,y+b+xa)\).
[oraux/ex6540]
Montrer que \((\mathbf{R}^2,{*})\) est un groupe.
Montrer que \(P=\{(x,y)\in\mathbf{R}^2,\ y=x^2\}\) est un sous-groupe de \((\mathbf{R}^2,{*})\).
Montrer que \(\Phi:(\mathbf{R},{+})\rightarrow(P,{*})\) qui à \(x\) associe \((x,x^2)\) est un isomorphisme.
[structures/ex0051] Soit \(\mathbf{R}^*\) l’ensemble des réels non nuls, et \(E=\mathbf{R}^*\times\mathbf{R}\).
[structures/ex0051]
Soit \(\triangle\) la loi définie sur \(E\) par \[\forall((a,b),(c,d))\in E^2\quad(a,b)\triangle(c,d)=(ac,ad+b).\] Montrer que \((E,{\triangle})\) est un groupe.
Pour \((a,b)\in E\), soit \(f_{a,b}\) la fonction de \(\mathbf{R}\) dans \(\mathbf{R}\) définie par \[f_{a,b}(x)=ax+b,\] et soit \[\mathfrak{S}=\{f_{a,b},(a,b)\in E\}.\] Montrer que \(\mathfrak{S}\) est un groupe de permutations de \(\mathbf{R}\) isomorphe au groupe \((E,{\triangle})\) de la question précédente.
[planches/ex9408] polytechnique MP 2023
[planches/ex9408]
Soit \(s:\mathbf{R}^*\to\mathbf{R}^*\), \(t\mapsto t^{-1}\). Déterminer le groupe engendré par \(s\).
On définit les applications \(s_1:(t,u)\in\mathbf{R}^*\times\mathbf{R}^*\mapsto(t^{-1},tu)\in\mathbf{R}^*\times\mathbf{R}^*\) et ??
Montrer que le sous-groupe qu’elles engendrent est isomorphe à \(\mathfrak{S}_3\).
Retrouver le résultat de la question précédente en considérant le quotient \(A\) de \((\mathbf{R}^*)^3\) par la relation de colinéarité, la bijection \(f:A\rightarrow(\mathbf{R}^*)^2\) qui associe à la classe de \((x_1,x_2,x_3)\) le couple \((x_1/x_2,x_2/x_3)\), et enfin les permutations de \(A\) induites par \((x_1,x_2,x_3)\mapsto(x_2,x_1,x_3)\) et \((x_1,x_2,x_3)\mapsto(x_1,x_3,x_2)\).
Soit \(n\geqslant 3\). Déterminer le groupe engendré par les bijections \((s_i)_{1\leqslant i\leqslant n}\) de \((\mathbf{R}^*)^n\) définies par \(s_i(t_1,\ldots,t_n)=(t_1,\ldots,t_{i-2},t_{i-1}\times t_i,t_i^{-1},t_i\times t_{i+1},t_{i+2},\ldots,t_n)\) si \(1<i<n\), \(s_1(t_1,\ldots,t_n)=(t_1^{-1},t_1\times t_2,t_3,\ldots,t_n)\) et \(s_n(t_1,\ldots,t_n)=(t_1,\ldots,t_{n-2},t_{n-1}\times t_n,t_n^{-1})\).
Indication : Considérer \(f:(\mathbf{R}^*)^{n+1}\to(\mathbf{R}^*)^n\) définie par \(f(t_1,\ldots,t_{n+1})=\displaystyle\left(\frac{t_2}{t_1},\ldots,\frac{t_{n+1}}{t_n}\right)\) et chercher des bijections simples \(s_i'\) de \((\mathbf{R}^*)^{n+1}\) telles que \(s_i\mathbin{\circ} f=f\mathbin{\circ} s_i'\).
[concours/ex6890] ens paris, ens lyon, ens cachan 2003 Trouver les groupes isomorphes parmi \((\mathbf{R},{+})\), \((\mathbf{Z}^2,{+})\), \((\mathbf{Q},{+})\), \((\mathop{\mathchoice{\hbox{SL}}{\hbox{SL}}{\mathrm{SL}}{\mathrm{SL}}}\nolimits_2(\mathbf{F}_3),{\mathbin{\circ}})\), \((\mathbf{Z}/6\mathbf{Z},{+})\), \((\mathbf{Z}/2\mathbf{Z}\times\mathbf{Z}/3\mathbf{Z},{+})\), \(\left(\vphantom{|_|}\smash{(\mathbf{Z}/7\mathbf{Z})^*},{\times}\right)\), \((\mathscr{S}_3,{\mathbin{\circ}})\).
[concours/ex6890]
[planches/ex7512] ens saclay, ens rennes MP 2022 On fixe un corps \(\mathbf{K}\) et on pose \(H=\left\{\pmatrix{1&a&b\cr0&1&c\cr0&0&1},\ (a,b,c)\in\mathbf{K}^3\right\}\).
[planches/ex7512]
Montrer que \(H\) est un sous-espace affine de dimension 3 de \(\mathscr{M}_3(\mathbf{K})\).
Montrer que \(H\) est un sous-groupe de \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_3(\mathbf{K})\), et en déterminer le centre (c’est-à-dire l’ensemble des éléments qui commutent avec tous les éléments de \(H\)).
On note \(L=\left\{\pmatrix{0&a&b\cr0&0&c\cr0&0&0},\ (a,b,c)\in\mathbf{K}^3\right\}\).
On définit \(*\) par \(A*B=A+B+\displaystyle{1\over2}(AB-BA)\) pour \(A\) et \(B\) dans \(L\). Montrer que \((L,{*})\) est un groupe et que l’exponentielle définit un isomorphisme de groupes de \(L\) vers \(H\).
Calculer \(A^n\) pour \(A\in H\) et \(n\in\mathbf{N}\).
On prend \(\mathbf{K}=\mathbf{Z}/2\mathbf{Z}\). Montrer que \(H\) est isomorphe au groupe des isométries vectorielles de \(\mathbf{R}^2\) qui stabilisent le carré \(C:=\{(1,0),(0,1),(-1,0),(0,-1)\}\).
[ensembles/ex0125] Quels sont les morphismes de \((\mathbf{Z},+)\) dans \((\mathbf{R}^*,\times)\) ?
[ensembles/ex0125]
[ev.algebre/ex1033] Soit \(F=\Bigl\{A\in\mathscr{M}_2(\mathbf{R})\mid\exists a\in\mathbf{R}^*\quad A=\left(\begin{array}{cc} a&0\\0&1\end{array}\right)\Bigr\}\).
[ev.algebre/ex1033]
Montrer que \((F,{\times})\) est un groupe commutatif.
Montrer que \(\varphi:\mathbf{R}^*\rightarrow F\), \(a\mapsto\left(\begin{array}{cc} a&0\\0&1\end{array}\right)\) est un isomorphisme de groupes.
[oraux/ex3486] ens paris, ens lyon, ens cachan MP 2011
[oraux/ex3486]
Déterminer \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_2(\mathbf{Z}/2\mathbf{Z})\). Quelle est sa structure algébrique ?
À quel groupe est-il isomorphe ?
[planches/ex7513] ens lyon MP 2022 On prend pour \(\mathbf{K}\) l’un des corps \(\mathbf{R}\) ou \(\mathbf{C}\).
[planches/ex7513]
Déterminer les éléments de \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{K})\) qui commutent avec tous les autres.
Étant donné \(n\in\mathbf{N}^*\), on note \(\mathbf{P}^n(\mathbf{K})\) l’ensemble quotient de \(\mathbf{K}^{n+1}\setminus\{0\}\) pour la relation de colinéarité entre vecteurs. On choisit un élément \(\infty\) hors de \(\mathbf{K}\). Montrer que l’on définit une bijection de \(\mathbf{P}^1(\mathbf{K})\) sur \(\mathbf{K}\cup\{\infty\}\) en associant à la classe de \((a,b)\) le nombre \(\displaystyle{a\over b}\) si \(b\neq0\), et \(\infty\) si \(b=0\).
On note \(\hbox{PGL}_n(\mathbf{K})\) le quotient de \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{K})\) par la relation d’équivalence définie comme suit : \(P\sim Q\Longleftrightarrow\exists\alpha\in\mathbf{K}^*\ :\ P=\alpha Q\). Montrer qu’il existe une unique structure de groupe sur \(\hbox{PGL}_n(\mathbf{K})\) faisant de la projection canonique \(P\longmapsto[P]\) un morphisme de \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{K})\) dans \(\hbox{PGL}_n(\mathbf{K})\). On munit \(\hbox{PGL}_n(\mathbf{K})\) de cette structure de groupe dans toute la suite de l’énoncé.
Montrer que, pour \(P\in\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{K})\) et \(X\in\mathbf{K}^n\), la classe de colinéarité du vecteur \(PX\) ne dépend que de la classe de \(P\) modulo \(\sim\) et de la classe de colinéarité de \(X\). On obtient ainsi une fonction \(\rho:\hbox{PGL}_n(\mathbf{K})\times\mathbf{P}^{n-1}(\mathbf{K})\longrightarrow\mathbf{P}^{n-1}(\mathbf{K})\) envoyant systématiquement le couple \(([P],[X])\) sur \([PX]\). On notera \(g.x:=\rho(g,x)\) pour \(g\in\hbox{PGL}_n(\mathbf{K})\) et \(x\in\mathbf{P}^{n-1}(\mathbf{K})\).
Soit \(g\in\hbox{PGL}_2(\mathbf{K})\) représenté par la matrice \(\pmatrix{a&b\cr c&d}\). Montrer que, via l’identification de la question 2 entre \(\mathbf{P}^1(\mathbf{K})\) et \(\mathbf{K}\cup\{\infty\}\), l’application \(x\longmapsto g.x\) s’identifie à l’homographie \(\rho_g:z\in\mathbf{K}\cup\{\infty\}\longmapsto\displaystyle{az+b\over cz+d}\in\mathbf{K}\cup\{\infty\}\), en convenant que \(\displaystyle{az+b\over cz+d}=\infty\) si \(z\in\mathbf{K}\) et \(cz+d=0\), \(\displaystyle{a\infty+b\over c\infty+d}={a\over c}\) si \(c\in\mathbf{K}^*\), et \(\displaystyle{a\infty+b\over c\infty+d}=\infty\) si \(c=0\).
Soit \(a\), \(b\), \(c\) des éléments distincts de \(\mathbf{P}^1(\mathbf{K})\), et \(a'\), \(b'\), \(c'\) des éléments distincts de \(\mathbf{P}^1(\mathbf{K})\). Montrer qu’il existe \(g\in\hbox{PGL}_2(\mathbf{K})\) tel que \((a',b',c')=(g.a,g.b,g.c)\).
Pour \(x\in\mathbf{P}^1(\mathbf{K})\), on note \(S_x:=\{g\in\hbox{PGL}_2(\mathbf{K})\ :\ g.x=x\}\). Expliciter \(S_0\), \(S_\infty\), \(S_0\cap S_\infty\) et \(S_0\cap S_\infty\cap S_1\) (avec l’identification précédente entre \(\mathbf{K}\cup\{\infty\}\) et \(\mathbf{P}^1(\mathbf{K})\)).
Montrer que, dans le groupe \(\hbox{PGL}_2(\mathbf{C})\), tout élément d’ordre 2 est conjugué à l’élément dont l’homographie associée est \(z\longmapsto-z\).
Vous avez le choix entre plusieurs mises en page des PDF contenant les exercices : testez-les !