[planches/ex0928] polytechnique MP 2013 Soit \(q:\mathbf{R}\rightarrow\mathbf{R}\) continue et intégrable. Montrer que toute solution de l’équation différentielle \(y''+(1+q(t))y=0\) est bornée sur \(\mathbf{R}\).
[planches/ex0928]
[concours/ex3236] mines M 1993 Soit \(u\) une application continue de \(\mathbf{R}_+\) dans \(\mathbf{R}\) et \(f\) une application continue de \(\mathbf{R}_+\) dans \(\mathbf{R}_+\). On suppose qu’il existe une constante \(A\) telle que, pour tout \(x\) de \(\mathbf{R}_+\), \[u(x)\leqslant A+\int_0^xf(t)u(t)\,dt.\] Montrer que \[u(x)\leqslant A\mathop{\mathchoice{\hbox{exp}}{\hbox{exp}}{\mathrm{exp}}{\mathrm{exp}}}\nolimits\left(\int_0^xf(t)\,dt\right).\] Soit \((E)\) l’équation différentielle : \(y''+y(1+g(t))=0\), où \(g\) est une application continue de \(\mathbf{R}_+\) dans \(\mathbf{R}\) telle que \(\displaystyle\int_0^{+\infty}\bigl|g(t)\bigr|\,dt\) converge. Montrer que toute solution de \(E\) est bornée.
[concours/ex3236]
[oraux/ex3049] centrale MP 2009 Soit \(I\) un intervalle ouvert et non vide de \(\mathbf{R}\).
[oraux/ex3049]
Soient \(A\) et \(B\) dans \(\mathscr{C}^0(I,\mathbf{R})\) et \((E)\) : \(y''+Ay'+By=0\).
Soit \(f\) une solution non identiquement nulle de \((E)\) et \(S\) un segment de \(I\). Montrer que \(f\) s’annule un nombre fini de fois sur \(S\).
Soient \(f\) et \(g\) deux solutions linéairement indépendantes de \((E)\). Soit \((u,v)\in I^2\) tel que \(u<v\) et \(f(u)=f(v)=0\). Montrer que \(g\) possède un zéro sur \(\left]u,v\right[\).
Soient \(p\) et \(q\) dans \(\mathscr{C}^0(I,\mathbf{R})\) telles que : \(\forall x\in I\), \(p(x)<q(x)\). Soient \(f\), \(g\in\mathscr{C}^2(I,\mathbf{R})\) non identiquement nulles et telles que : \(f''+pf=0\) et \(g''+qg=0\). Soit \((u,v)\in I^2\) tel que \(u<v\) et \(f(u)=f(v)=0\). Montrer que \(g\) possède un zéro sur \(\left]u,v\right[\).
[concours/ex6515] polytechnique PC 2006 Soient \(f_1\) et \(f_2\) deux fonctions continues sur \(\mathbf{R}\) telles que \(f_2>f_1\), \((E_1)\) : \(y''+f_1y=0\), et \((E_2)\) : \(y''+f_2y=0\), \(y_1\) (resp. \(y_2\)) une solution non nulle de \((E_1)\) (resp. de \((E_2)\)), \(\alpha\) et \(\beta\) deux zéros consécutifs de \(y_1\). Montrer que \(y_2\) s’annule sur \([\alpha,\beta]\).
[concours/ex6515]
[planches/ex1109] centrale MP 2016
[planches/ex1109]
Soient \(q_1\) et \(q_2\) deux fonctions continues de \(\mathbf{R}\) dans \(\mathbf{R}\) telles que \(q_2\geqslant q_1\), \(u\) (resp. \(v\)) une solution non identiquement nulle de \(y_1''+q_1y=0\) (resp. \(y''+q_2y=0\)), \(a\) et \(b\) deux zéros consécutifs de \(u\). Montrer que soit \(v/u\) est constante sur \(\left]a,b\right[\), soit \(v\) s’annule sur \(\left]a,b\right[\).
Soit \(q\) une fonction continue de \(\mathbf{R}\) dans \(\mathbf{R}_-\). Que dire de l’ensemble des zéros d’une solution de \(y''+qy=0\) ?
Soient \(c\) et \(d\) deux éléments de \(\mathbf{R}_+^*\) tels que \(c<d\), \(q\) une fonction continue de \(\mathbf{R}\) dans \([c^2,d^2]\). Que dire de l’ensemble des zéros d’une solution de \(y''+qy=0\) ?
Vous pouvez choisir d'afficher ou non des icônes pour savoir si les exercices possèdent une solution