[concours/ex1319] mines MP 1998 Soit \(I\) un intervalle non vide de \(\mathbf{R}\), et \(p\in\mathscr{C}(I,\mathbf{C})\). Soit \(u\) une solution de \(y''+py=0\).
[concours/ex1319]
On suppose que, pour tout \(t\in I\), \(\mathop{\mathchoice{\hbox{Re}}{\hbox{Re}}{\mathrm{Re}}{\mathrm{Re}}}\nolimits p(t)\leqslant 0\). Montrer que si \(u\) s’annule deux fois sur \(I\), alors \(u=0\).
On suppose que pour tout \(t\in I\), \(\mathop{\mathchoice{\hbox{Im}}{\hbox{Im}}{\mathrm{Im}}{\mathrm{Im}}}\nolimits p(t)\neq0\). Montrer que si \(u\) s’annule deux fois sur \(I\), alors \(u=0\).
[planches/ex0935] polytechnique, ens cachan PSI 2013 Soit \((E)\) l’équation différentielle : \(y''(x)+q(x)y(x)=0\) où \(q\) est une fonction continue de \(\mathbf{R}\) dans \(\mathbf{R}\), non identiquement nulle et négative.
[planches/ex0935]
Soit \(y\in\mathscr{C}^2(\mathbf{R},\mathbf{R})\) une solution positive de \((E)\) sur \(\mathbf{R}\). Montrer que \(y\) est convexe.
Soit \(y\in\mathscr{C}^2(\mathbf{R},\mathbf{R})\) une solution de \((E)\) sur \(\mathbf{R}\). Montrer que \(y^2\) est convexe.
Soit \(y\in\mathscr{C}^2(\mathbf{R},\mathbf{R})\) une solution bornée de \((E)\) sur \(\mathbf{R}\). Montrer que \(y\) est identiquement nulle.
Soit \(y\in\mathscr{C}^2(\mathbf{R},\mathbf{R})\) une solution de \((E)\) sur \(\mathbf{R}\) telle que \(y(0)=1\) et \(y'(0)=0\).
Montrer que pour tout \(x\in\mathbf{R}\), \(|y(x)|\geqslant 1\), puis \(y(x)\geqslant 1\).
Montrer que \(y\) est convexe.
[oraux/ex3122] centrale PC 2010 Soient \(I\) un intervalle de \(\mathbf{R}\), \(q\in\mathscr{C}^0(I,\mathbf{R}_-^*)\) et \((E)\) l’équation différentielle \(y''+qy=0\).
[oraux/ex3122]
Si \(f\) est solution de \(E\), montrer que \(f^2\) est convexe.
Montrer que toute solution non identiquement nulle de \((E)\) s’annule au plus une fois.
[oraux/ex5641] centrale MP 2012 Soient \(q\in{\cal C}^0(\mathbf{R},\mathbf{R}^-)\) non identiquement nulle, \((a,b)\in (\mathbf{R}^{+*})^2\) et \((E)\) l’équation différentielle : \(y''+q\,y=0\).
[oraux/ex5641]
Justifier l’existence d’une unique solution \(y_0\) de \((E)\) vérifiant \(y_0(0)=a\) et \(y'_0(0)=0\).
Résoudre l’équation différentielle \(Y''-b^2\,Y=0\) avec \(Y(0)=a\) et \(Y'(0)=0\).
Montrer que \(y_0^2\) est convexe.
La fonction \(y_0\) admet-elle deux zéros distincts ? Est-elle bornée ?
Montrer que \(y_0\) est minorée par \(a\) et convexe.
On suppose \(q\leqslant-b^2\). Montrer que \(y_0\geqslant Y\).
[oraux/ex3090] mines MP 2010 Soient \(q\) une application continue de \(\mathbf{R}\) dans \(\mathbf{R}_+\), \(f\) une solution non identiquement nulle de \(y''-qy=0\). Montrer que \(f\) s’annule au plus une fois sur \(\mathbf{R}\).
[oraux/ex3090]
Vous pouvez paramétrer titre, entête et pied de page, fonte, ordre des exercices lors de la production des PDF