[oraux/ex2955] polytechnique MP 2008 Soit \(q\) une fonction réelle continue sur \(\mathbf{R}\) et ne prenant que des valeurs strictement négatives. On considère l’équation différentielle \(x''+q(t)x=0\).
[oraux/ex2955]
Montrer que la seule solution bornée sur \(\mathbf{R}\) est la fonction nulle.
Montrer qu’une solution non nulle s’annule au plus une fois sur \(\mathbf{R}\).
[equadiff/ex0107] Soit l’équation \(x''+q(t)x=0\) avec \(q\) continue et négative sur \(\mathbf{R}\). Montrer qu’une solution de \((E)\) qui admet deux zéros est identiquement nulle.
[equadiff/ex0107]
[oraux/ex2819] ens cachan 2004 Considérons l’équation différentielle : \(y''+a(t)y'+b(t)y=0\) où \(a\) et \(b\) sont des fonctions réelles continues. Soit \(y_1\) et \(y_2\) deux solutions linéairement indépendantes.
[oraux/ex2819]
Montrer que les zéros de \(y_1\) sont isolés et qu’entre deux zéros de \(y_1\) il y a un unique zéro de \(y_2\).
Soit l’équation différentielle \(y''+q(t)y=0\) où \(q\) est continue négative. Soit \(y\) une solution non constante ; montrer que \(y\) a au plus un zéro.
[oraux/ex3169] centrale MP 2011 Soient \(q\in\mathscr{C}^0(\mathbf{R}_+,\mathbf{R}_+)\) et \(E\) l’ensemble des solutions de l’équation \(y''-qy=0\).
[oraux/ex3169]
Justifier l’existence de la solution \(y_s\) telle que \(y_s(0)=1\) et \(y'_s(0)=s\).
Montrer que si \(y\in E\) alors \(y^2\) est convexe.
Montrer que \(y_1\geqslant 1\) sur \(\mathbf{R}_+\) puis que \(\displaystyle{1\over y_1^2}\) est intégrable sur \(\mathbf{R}_+\).
Montrer que \(Y:x\mapsto y_1(x)\displaystyle\int_x^{+\infty}{dt\over y_1(t)^2}\) est une solution bornée de \(E\).
Indication : Montrer que \(\displaystyle\int_x^{+\infty}{dt\over y_1(t)^2}\leqslant\displaystyle\int_x^{+\infty}{y_1'(t)\over(y_1-t)^2}\,dt\).
Montrer qu’il existe un unique \(s_0\in\mathbf{R}\) tel que \(y_{s_0}\) ne s’annule pas et soit bornée sur \(\mathbf{R}_+\). Montrer que \(y_{s_0}\) et sa dérivée convergent en \(+\infty\).
Que dire de la limite de \(y_s\) si \(s>s_0\) ? si \(s<s_0\) ?
[planches/ex1096] polytechnique, ens cachan PSI 2016 Soit \(q\in\mathscr{C}^0(\mathbf{R},\mathbf{R}_+^*)\). On cherche s’il existe des solutions non nulles bornées de l’équation \((E)\) : \(y''-q(x)y=0\).
[planches/ex1096]
Soit \(f\) une solution non nulle de \((E)\). Montrer qu’on peut supposer l’existence d’un réel \(a\) tel que \(f(a)>0\) et \(f'(a)>0\).
Montrer que, pour tout \(x\geqslant a\), \(f'(x)\geqslant f'(a)\).
Conclure.
Vous pouvez choisir d'afficher tous les résultats d'une requête de façon individuelle, ou en les regroupant par familles d'exercices