[planches/ex9044] ccinp PC 2022 Soit \(q\) une fonction continue et \(T\)-périodique de \(\mathbf{R}\) dans \(\mathbf{R}\). On considère l’équation différentielle \((E_q)\) : \(y''+qy=0\).
[planches/ex9044]
On suppose que \(q\) est la fonction constante égale à 1. Montrer que les solutions de \((E_1)\) sont toutes bornées.
On rappelle qu’une base de l’espace \(S_q\) des solutions de \((E_q)\) est \((y_1,y_2)\) où \(y_1\) et \(y_2\) sont les solutions de \((E_q)\) telles que \((y_1(0)=1,\ y_1'(0)=0)\) et \((y_2(0)=0,\ y_2'(0)=1)\). Soit \(F\) l’application qui à \(y\in S_q\) associe la fonction \(t\longmapsto y(t+T)\).
Montrer que \(F\) est un endomorphisme de \(S_q\) et que sa matrice dans la base \((y_1,y_2)\) est \(A=\pmatrix{y_1(T)&y_2(T)\cr y_1'(T)&y_2'(T)}\).
Montrer que la fonction \(W:t\longmapsto y_1(t)y_2'(t)-y_1'(t)y_2(t)\) est constante.
Montrer que \(\chi_A(X)=X^2-\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits(A)X+1\).
On suppose que \(|\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits(A)|<2\). Montrer que \(\chi_A\) admet deux racines complexes conjuguées \(\lambda\) et \(\overline\lambda\). Montrer qu’il existe deux solutions \(z_1\) et \(z_2\) de \((E_q)\), à valeurs dans \(\mathbf{C}\), telles que \(F(z_1)=\lambda z_1\) et \(F(z_2)=\overline\lambda z_2\).
[planches/ex4991] mines MP 2019 Soient \(a\) et \(b\) deux fonctions continues et 1-périodiques de \(\mathbf{R}\) dans \(\mathbf{C}\), \(E\) l’espace des solutions de \(y''+a(t)y'+b(t)y=0\). Montrer qu’il existe \(\lambda\in\mathbf{C}^*\) et \(y\in E\setminus\{0\}\) tels que \(\forall t\in\mathbf{R}\), \(y(t+1)=\lambda y(t)\).
[planches/ex4991]
[oraux/ex3003] ens lyon MP 2009 Soient \(T>0\), \(q\in\mathscr{C}^0(\mathbf{R},\mathbf{R})\) une fonction \(T\)-périodique, \(S\) l’espace des solutions réelles de \(y''+qy=0\) sur \(\mathbf{R}\), \(y_1\) (resp. \(y_2\)) l’élément de \(S\) tel que \(y_1(0)=0\), \(y_1'(0)=1\) (resp. \(y_2(0)=1\), \(y_2'(0)=0\)).
[oraux/ex3003]
Montrer que si \(f\) est dans \(S\), il en est de même de \(f_T:x\mapsto f(x+T)\). On note \(\Phi\) l’endomorphisme de \(S\) que à \(f\in S\) associe \(f_T\) et \(A\) sa matrice dans la base \((y_1,y_2)\).
Calculer le déterminant de \(A\).
On suppose \(|\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits A|<2\). Montrer que tout élément de \(S\) est borné sur \(\mathbf{R}\).
On suppose \(q\geqslant 0\) et \(q\) non identiquement nulle. Montrer que tout élément de \(S\) s’annule au moins deux fois sur \(\mathbf{R}\).
On suppose que \(q\) est positive et que \(\displaystyle{1\over T}\int_0^Tq<4\). Montrer que toutes les solutions de \((E)\) sont bornées sur \(\mathbf{R}\).
Indication : on admettra que si \(f\in\mathscr{C}^2([a,b],\mathbf{R})\) avec \(f(a)=f(b)=0\) alors \(\displaystyle\int_a^b\left|{f''\over f}\right|>\displaystyle{4\over b-a}\).
[examen/ex1420] polytechnique PSI 2024 On considère l’équation différentielle \((E)\): \(y''(t)+\varphi(t)y(t)=0\), avec \(\varphi\) continue \(2\pi\)-périodique et on note \(Sol\) l’ensemble des solutions de \((E)\) de classe \(\mathscr{C}^2\) à valeurs complexes.
[examen/ex1420]
Montrer qu’il existe \(y_1\in Sol\) telle que \(y_1(0)=1,\) \(y'_1(0)=0\), et \(y_2\in Sol\) telle que \(y_2(0)=0,y'_2(0)=1\).
Montrer que toute solution de \((E)\) est combinaison linéaire de \(y_1\) et \(y_2\).
Pour \(y\in Sol\), on note \(\Psi(y)\) la fonction \(t\mapsto y(t+2\pi)\). Montrer que \(\Psi(y)\in Sol\).
Déterminer la nature de l’application \(\Psi\).
Montrer que, si \(z\in Sol\) avec \(z\neq 0\) est telle que \(\forall t\in\mathbb{R}\), \(z(t+2\pi)=\lambda z(t)\) avec \(\lambda\in\mathbb{C}\), alors \(\lambda\) est racine du polynôme \(X^2-(y_1(2\pi)+y'_2(2\pi))X-y'_1(2\pi)y_2(2\pi)+y_1(2\pi)y'_2(2\pi)\). Étudier la réciproque.
Montrer que \(\lambda\) ne peut être nul puis que \(\mathop{\mathchoice{\hbox{det}}{\hbox{det}}{\mathrm{det}}{\mathrm{det}}}\nolimits (\varphi)=1\).
[oraux/ex5642] centrale MP 2012 Soient \(q\in{\cal C}^0(\mathbf{R},\mathbf{R})\) paire et \(\pi\)-périodique, \((E)\) l’équation différentielle : \(y''+q\,y=0\).
[oraux/ex5642]
Montrer qu’il existe une unique solution \(y_1\) de \((E)\) telle que \(y_1(0)=1\) et \(y'_1(0)=0\) et une unique solution \(y_2\) de \((E)\) telle que \(y_2(0)=0\) et \(y'_2(0)=1\).
Montrer que \((y_1,y_2)\) est une base de l’espace vectoriel \(S\) des solutions de \((E)\).
Montrer que \(y_1\) est paire et \(y_2\) impaire.
Montrer que la fonction \(y_1\,y'_2-y'_1\,y_2\) est constante.
Pour \(y\in S\), on note \(f(y)\,:\;t\mapsto y(t+\pi)\).
Montrer que \(f\) est un endomorphisme de \(S\).
Déterminer la matrice \(A\) de \(f\) dans la base \((y_1,y_2)\).
Montrer que le polynôme caractéristique de \(A\) est de la forme \(X^2-2a\,X+1\), pour un certain réel \(a\).
On suppose \(a=1\). Montrer que \((E)\) admet une solution \(\pi\)-périodique non triviale.
On suppose \(a=-1\). Montrer que \((E)\) admet une solution \(2\pi\)-périodique non triviale.
On suppose \(|a|>1\). Montrer que \(f\) admet deux vecteurs propres linéairement indépendants. Montrer que ce sont des fonctions non bornées. En déduire les solutions bornées de \((E)\).
Vous pouvez choisir la fonte des exercices lors de la compilation des PDF