[oraux/ex4963] ens PC 2012 Soient \((E)\) : \(y''+(1+e^{-t}) y=0\) et \((F)\) : \(y''+y=0\). Soient \(f\) une solution non nulle de \((E)\) et \(g\) une solution non nulle de \((F)\).
[oraux/ex4963]
Montrer qu’entre deux zéros de \(g\) il y a au moins un zéro de \(f\).
Montrer que \(f\) possède une infinité de zéros sur \(\mathbf{R}^+\). On note \((x_n)_{n\geqslant 0}\) la suite ordonnée des zéros de \(f\) sur \(\mathbf{R}^+\).
Montrer que \(x_{n+1}-x_n\rightarrow \pi\).
Donner un équivalent de \(x_n\) quand \(n\rightarrow +\infty\).
[planches/ex0989] ens paris, ens lyon, ens cachan, ens rennes MP 2014 Soient \(a>0\) et \(f\in\mathscr{C}^1(\left[1,+\infty\right[,\mathbf{R}_+^*)\) telle que \(\mathop{\mathchoice{\hbox{lim}}{\hbox{lim}}{\mathrm{lim}}{\mathrm{lim}}}\limits_{+\infty}f'=a\). On considère \(u\in\mathscr{C}^2(\left[1,+\infty\right[,\mathbf{R})\) bornée et solution de l’équation différentielle \((E)\) : \(y''-\displaystyle{f'\over f}y'-{y\over f^2}=0\).
[planches/ex0989]
Montrer que \(u'(x)=O(1/x)\) quand \(x\rightarrow+\infty\).
Montrer que \(u(x)\rightarrow0\) quand \(x\rightarrow+\infty\).
[planches/ex1079] ens paris, ens lyon, ens cachan, ens rennes MP 2016 Soient \(b\in\mathbf{R}_+^*\) et \(f\) une fonction continue définie sur \(\left[1,+\infty\right[\) telle que \(f(r)=O(r^{-b-2})\).
[planches/ex1079]
Soit \(u\) de classe \(\mathscr{C}^2\) sur \(\left[1,+\infty\right[\) bornée telle que \(-u''-\displaystyle{u'\over r}+{u\over r^2}=f\). Montrer que \(u\) tend vers 0 en \(+\infty\) et préciser la vitesse de convergence.
Soient \(j>0\) de classe \(\mathscr{C}^1\) sur \(\left[1,+\infty\right[\) telle que \(j'\) tend vers 1 en \(+\infty\) et \(u\) de classe \(\mathscr{C}^2\) sur \(\left[1,+\infty\right[\) bornée telle que \(-u''-\displaystyle{j'\over j}u'+{u\over j^2}=f\). Montrer que \(u\) tend vers 0 en \(+\infty\).
[oraux/ex3187] centrale PC 2011 (avec Maple)
[oraux/ex3187]
Maple
Soit, pour \(a\in\mathbf{R}\), \((E_a)\) : \((x-1)y''(x)-y'(x)+4a(x-1)^3y(x)=0\).
Donner une condition nécessaire et suffisante sur \(a\) pour qu’il existe une solution non nulle de \((E_a)\) s’annulant en 0 et en 1. On note \((a_k)_{k\geqslant 0}\) la suite strictement croissante des réels ainsi trouvés.
Soit, pour \(k\in\mathbf{N}\), \(\varphi_k:x\mapsto\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(\sqrt{a_k}x(x-2))\).
Si \((f,g)\in\mathscr{C}^0([0,1],\mathbf{R})^2\), on pose \(\langle f,g\rangle=\displaystyle\int_0^12(1-x)f(x)g(x)\,dx\). Montrer que cette application définit un produit scalaire sur \(\mathscr{C}^0([0,1],\mathbf{R})\). Calculer \(\langle\varphi_k,\varphi_j\rangle\) pour \((j,k)\in\mathbf{N}^2\).
Soit \((b_n)_{n\geqslant 0}\in\mathbf{R}^\mathbf{N}\). On suppose que la série de terme général \(b_n\) est absolument convergente. Soit \(F:x\mapsto\displaystyle\sum\limits_{k=0}^{+\infty}b_k\varphi_k(x)\). Montrer que \(F\) est définie et continue sur \(\mathbf{R}\). Exprimer les \(b_k\) à l’aide d’une intégrale faisant intervenir \(F\) et les \((\varphi_n)_{n\geqslant 0}\).
[planches/ex0929] polytechnique MP 2013 Soit \(q\in\mathscr{C}^0(\mathbf{R},\mathbf{R})\) intégrable. Étudier les solutions bornées de \(y''-(1+q)y=0\).
[planches/ex0929]
Vous pouvez choisir d'afficher ou non des icônes pour savoir si les exercices possèdent une solution