[oraux/ex3002] ens paris MP 2009 Soit \(E\) l’ensemble des fonctions complexes de classe \(C^\infty\) sur \(\mathbf{R}^2\), \(2\pi\)-périodiques par rapport à la première variable. On se donne une fonction complexe \(f_0\) de classe \(C^\infty\) sur \(\mathbf{R}\) et \(2\pi\)-périodique.
[oraux/ex3002]
Trouver \(f\in E\) telle que : \(\displaystyle{\partial f\over\partial t}(x,t)=-i\displaystyle{\partial^2f\over\partial x^2}(x,t)\) et \(\forall x\in\mathbf{R}\), \(f(x,0)=f_0(x)\).
Expliciter une constante \(C\) telle que : \[\int_0^{2\pi}\!\!\int_0^{2\pi}|f(x,t)|^4\,dx\,dt\leqslant C\left(\int_0^{2\pi}|f_0(x)|^2\,dx\right)^{\!2}.\]
[oraux/ex3077] ens cachan MP 2010 Soient \(T\in\mathbf{R}_+^*\) et \(a\in\mathscr{C}^1(\mathbf{R},\mathbf{R})\) une fonction \(T\)-périodique. On pose \(a_0=\displaystyle{1\over T}\int_0^Ta(x)\,dx\). Pour \(\varepsilon>0\), soit \(a_\varepsilon:x\mapsto a(x/\varepsilon)\). Soit \(\varphi\in\mathscr{C}^1([0,1],\mathbf{R})\).
[oraux/ex3077]
Montrer que \(\mathop{\mathchoice{\hbox{lim}}{\hbox{lim}}{\mathrm{lim}}{\mathrm{lim}}}\limits_{\varepsilon\rightarrow0^+}\displaystyle\int_0^1a_\varepsilon(u)\varphi(u)\, du=a_0\displaystyle\int_0^1\varphi(u)\,du\).
On suppose désormais qu’il existe \(\alpha>0\) tel que \(\forall x\in\mathbf{R}\), \(a(x)\geqslant\alpha\). Soit \(f\in\mathscr{C}^0([0,1],\mathbf{R})\).
Soit \(\varepsilon>0\). Montrer qu’il existe une unique \(u_\varepsilon\in\mathscr{C}^2([0,1],\mathbf{R})\) solution du problème \((a_\varepsilon u')'=f\) et \(u(0)=u(1)=0\).
Que dire de \(u_\varepsilon\) lorsque \(\varepsilon\rightarrow0^+\) ?
[planches/ex2136] mines MP 2017 Soient \(a\) et \(b\) continues et 1-périodiques, et soit \(y\) solution de \(y''+ay'+by=0\) telle que \(y(0)=y(1)=0\). Montrer que \(y\) s’annule en tout \(k\in\mathbf{Z}\).
[planches/ex2136]
[oraux/ex2986] centrale MP 2008 Soit \(q:\mathbf{R}\rightarrow\mathbf{R}\) continue, \(2\pi\)-périodique, de valeur moyenne nulle. Pour \(n\in\mathbf{N}^*\), soit \(y_n:\mathbf{R}\rightarrow\mathbf{R}\) la solution du problème de Cauchy : \(y''+(1-q(nt))y=0\), \(y(0)=1\) et \(y'(0)=0\). Soit \(X_n:t\mapsto(y_n(t),y_n'(t))\). On munit \(\mathbf{R}^2\) de son produit scalaire canonique.
[oraux/ex2986]
Montrer que, \(\forall t\in\mathbf{R}\) : \(\langle X_n(t),X_n'(t)\rangle\leqslant\displaystyle{1\over2}|q_n(t)|\times\|X_n(t)\|^2\).
Soit \(T>0\). Montrer que \(y_n\) et \(y_n'\) sont bornées sur \([0,T]\) par une constante indépendante de \(n\).
Montrer que \((y_n)\) converge uniformément sur \([0,T]\).
[planches/ex1090] ens PC 2016 Soient \(f\in\mathscr{C}^0(\mathbf{R},\mathbf{R})\) et \(k\), \(c\in\mathbf{R}_+^*\) tels que, pour tout \(x\in\mathbf{R}\), \(|f(x)|\leqslant c\mathop{\mathchoice{\hbox{exp}}{\hbox{exp}}{\mathrm{exp}}{\mathrm{exp}}}\nolimits(-kx)\).
[planches/ex1090]
Existe-t-il \(u\in\mathscr{C}^2(\mathbf{R},\mathbf{R})\) telle que \(u''-u=f\) et \(u(x)\mathrel{\mathop{\longrightarrow}\limits_{x\rightarrow+\infty}}0\) ?
Soit \(u\in\mathscr{C}^2(\mathbf{R},\mathbf{R})\) telle que \(u''=(1+f)u\). Donner un équivalent de \(u(x)\) quand \(x\rightarrow+\infty\).
Vous pouvez choisir la typographie des énoncés : HTML (MathJax, plus joli) ou sous forme d'image (GIF, plus rapide)