[oraux/ex3136] ens PC 2011 Soit \(g\in\mathscr{C}^\infty(\mathbf{R}_+,\mathbf{R})\). On suppose qu’il existe \((\alpha,\beta)\in(\mathbf{R}_+^*)^2\) tel que : \(\forall x\in\mathbf{R}_+\), \(|g(x)|\leqslant\alpha e^{-\beta x}\). Montrer que l’équation différentielle \(u''-(1+g)u=0\) possède une solution non nulle ayant pour limite 0 en \(+\infty\).
[oraux/ex3136]
Indication : Considérer une suite de fonctions \((u_n)_{n\geqslant 0}\) telle que : \(\forall n\in\mathbf{N}\), \(u_{n+1}''-u_{n+1}=gu_n\).
[oraux/ex2986] centrale MP 2008 Soit \(q:\mathbf{R}\rightarrow\mathbf{R}\) continue, \(2\pi\)-périodique, de valeur moyenne nulle. Pour \(n\in\mathbf{N}^*\), soit \(y_n:\mathbf{R}\rightarrow\mathbf{R}\) la solution du problème de Cauchy : \(y''+(1-q(nt))y=0\), \(y(0)=1\) et \(y'(0)=0\). Soit \(X_n:t\mapsto(y_n(t),y_n'(t))\). On munit \(\mathbf{R}^2\) de son produit scalaire canonique.
[oraux/ex2986]
Montrer que, \(\forall t\in\mathbf{R}\) : \(\langle X_n(t),X_n'(t)\rangle\leqslant\displaystyle{1\over2}|q_n(t)|\times\|X_n(t)\|^2\).
Soit \(T>0\). Montrer que \(y_n\) et \(y_n'\) sont bornées sur \([0,T]\) par une constante indépendante de \(n\).
Montrer que \((y_n)\) converge uniformément sur \([0,T]\).
[planches/ex1636] ens PC 2017 Soit \(u\in\mathscr{C}^\infty(\mathbf{R},\mathbf{R})\) telle que \(u(0)=0\) et \(u(x)\rightarrow\ell\in\mathbf{R}\) quand \(x\rightarrow+\infty\). Soient \(c\in\mathbf{C}\setminus\mathbf{R}\) et \((*)\) l’équation différentielle \((u-c)y''=u''y\).
[planches/ex1636]
Déterminer la dimension de l’espace des solutions de \((*)\).
Donner une solution \(\varphi_1\) non nulle et bornée en \(+\infty\) de \((*)\).
Soit \(\varphi_2\) une solution de \((*)\) indépendante de \(\varphi_1\). Peut-on avoir \(\varphi_2\) bornée en \(+\infty\) ?
Que se passe-t-il si \(c\in\mathbf{R}\) ?
[planches/ex1596] ens PSI 2017 Soit \(f\in\mathscr{C}([0,1],\mathbf{R})\) et \(c\in\mathscr{C}([0,1],\mathbf{R}_+)\). On considère le problème aux limites : \[(1)\qquad-u''(x)+c(x)u(x)=f(x),\quad u(0)=u(1).\]
[planches/ex1596]
Pour \(\lambda\in\mathbf{R}\), on considère le système : \[(2)\qquad-u_\lambda(x)+c(x)u_\lambda(x)=f(x),\quad u_\lambda(0)=0,\quad u_\lambda(0)=\lambda.\] Montrer que \((2)\) possède une unique solution \(u_\lambda\) dans \(\mathscr{C}^2([0,1],\mathbf{R})\).
En déduire qu’il existe une unique solution de \((1)\) dans \(\mathscr{C}^2([0,1],\mathbf{R})\).
Indication : On pourra montrer que \(\varphi:\lambda\mapsto u_\lambda(1)\) est affine.
Montrer que si \(f\geqslant 0\), alors \(u\geqslant 0\).
[oraux/ex4961] ens PC 2012 Soient \(a,b,c,d\) dans \({\cal C}^2(\mathbf{R}^+,\mathbf{R})\). On suppose : \(a>0\), \(c<0\) et \(d>0\). Soit \((E)\) l’équation différentielle : \(ay''+by'+cy=d\), \(y(0)=0\).
[oraux/ex4961]
Si \(y'(0)=0\), montrer que : \(\forall t\in\mathbf{R}^{+*}\), \(y(t)>0\).
On suppose qu’il existe \(t_1>0\) tel que \(y(t_1)>0\). Montrer : \(\forall t\geqslant t_1\), \(y(t)\geqslant 0\).
Vous pouvez paramétrer titre, entête et pied de page, fonte, ordre des exercices lors de la production des PDF