[planches/ex1110] centrale MP 2016 Soit \((E)\) l’équation différentielle : \((1-x)^3y''(x)=y(x)\).
[planches/ex1110]
Déterminer la structure de l’ensemble des solutions de \((E)\) sur \(\left]-\infty,1\right[\). Montrer que toutes ces solutions sont de classe \(\mathscr{C}^\infty\) sur \(\left]-\infty,1\right[\).
Soient \(y\) une solution de \((E)\) sur \(\left]-\infty,1\right[\) et, pour \(n\) dans \(\mathbf{N}\), \(a_n=\displaystyle{y^{(n)}(0)\over n\,!}\). Trouver une relation de récurrence satisfaite par \((a_n)_{n\geqslant 0}\).
Montrer que les solutions de \((E)\) sur \(\left]-\infty,1\right[\) sont développables en série entière au voisinage de 0.
Soit \(y\) la solution de \((E)\) sur \(\left]-\infty,1\right[\) telle que \(y(0)=0\), \(y'(0)=1\). Que dire de \(y(x)\) lorsque \(x\) tend vers 1 ?
[concours/ex4170] mines M 1990 Soit \(f\) une solution sur \(\mathbf{R}_+\) de : \[y''+e^{-t^2}y=\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits t.\] On suppose \(f\) bornée et \(\displaystyle\int_0^{+\infty}f^2\) convergente. Montrer que \(f'\) est bornée, puis que \(\mathop{\mathchoice{\hbox{lim}}{\hbox{lim}}{\mathrm{lim}}{\mathrm{lim}}}\limits_{t\rightarrow+\infty}f(t)=0\).
[concours/ex4170]
[planches/ex0929] polytechnique MP 2013 Soit \(q\in\mathscr{C}^0(\mathbf{R},\mathbf{R})\) intégrable. Étudier les solutions bornées de \(y''-(1+q)y=0\).
[planches/ex0929]
[planches/ex9979] mines MP 2023
[planches/ex9979]
Soient \(A\in\mathbf{R}^+\), \(f\), \(g:\mathbf{R}^+\rightarrow\mathbf{R}^+\) continues. On suppose que : \[\forall x\geqslant 0,\quad f(x)\leqslant A+\int_0^xf(t)\,g(t)\,\mathrm{d}t.\] Montrer que \(\forall x\geqslant 0\), \(f(x)\leqslant A\mathop{\mathchoice{\hbox{exp}}{\hbox{exp}}{\mathrm{exp}}{\mathrm{exp}}}\nolimits\left(\displaystyle\int_0^xg(t)\,\mathrm{d}t\right)\).
Soit \((*)\) l’équation différentielle \(x''(t)+a(t)x(t)=b(t)\) avec \(a\) et \(b\) continues sur \(\mathbf{R}^+\), \(b\) et \(t\mapsto t\,a(t)\) intégrables sur \(\mathbf{R}^+\). Soit \(x\) solution de \((*)\).
Montrer que : \[\forall t\geqslant 1,\quad x(t)=x(1)+(t-1)x'(1)-\int_1^t(t-u)\,a(u)\,x(u)\,\mathrm{d}u+\int_1^t(t-u)\,b(u)\,\mathrm{d}u.\]
On pose, pour \(t\geqslant 1\), \(y(t)=\displaystyle\frac{|x(t)|}{t}\). Montrer l’existence de \(K\) tel que : \[\forall t\geqslant 1,\quad y(t)\leqslant K\mathop{\mathchoice{\hbox{exp}}{\hbox{exp}}{\mathrm{exp}}{\mathrm{exp}}}\nolimits\left(\int_1^tu\,|a(u)|\,\mathrm{d}u\right)\leqslant K\mathop{\mathchoice{\hbox{exp}}{\hbox{exp}}{\mathrm{exp}}{\mathrm{exp}}}\nolimits\left(\int_1^{+\infty}u\,|a(u)|\,\mathrm{d}u\right).\]
[planches/ex0996] polytechnique MP 2014 Soit \(q:\mathbf{R}_+\rightarrow\mathbf{R}\) une fonction continue telle que \(t\mapsto tq(t)\) soit intégrable sur \(\mathbf{R}_+\). Soit \(y:\mathbf{R}_+\rightarrow\mathbf{R}\) une fonction deux fois dérivable telle que \(y''+qy=0\). Montrer successivement :
[planches/ex0996]
que \(t\mapsto\displaystyle{y(t)\over t}\) est bornée au voisinage de \(+\infty\) ;
que \(y'\) a une limite finie en \(+\infty\) ;
que \(t\mapsto\displaystyle{y(t)\over t}\) a une limite finie en \(+\infty\).
Vous pouvez désactiver ou réduire la fréquence d'affichage de ces fenêtres d'astuces