[planches/ex0996] polytechnique MP 2014 Soit \(q:\mathbf{R}_+\rightarrow\mathbf{R}\) une fonction continue telle que \(t\mapsto tq(t)\) soit intégrable sur \(\mathbf{R}_+\). Soit \(y:\mathbf{R}_+\rightarrow\mathbf{R}\) une fonction deux fois dérivable telle que \(y''+qy=0\). Montrer successivement :
[planches/ex0996]
que \(t\mapsto\displaystyle{y(t)\over t}\) est bornée au voisinage de \(+\infty\) ;
que \(y'\) a une limite finie en \(+\infty\) ;
que \(t\mapsto\displaystyle{y(t)\over t}\) a une limite finie en \(+\infty\).
[oraux/ex2799] mines 2003
[oraux/ex2799]
Soit \((E)\) : \(y''+y=f(x)\) où \(f\in\mathscr{C}^0(\mathbf{R}_+,\mathbf{R})\). Montrer que : \[g(x)=\displaystyle\int_0^xf(t)\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(x-t)\,dt\] est une solution de \((E)\) vérifiant \(y(0)=0\) et \(y'(0)=0\).
Soit \(\sigma>0\). On cherche une solution du problème de Cauchy \((E')\) : \(y''+y=\sigma y^2\), \(y(0)=1/2\) et \(y'(0)=0\). Soit \(b>0\) tel que \(\sigma b<1/2\). Soit \((y_n)\) la suite définie par : \[y_0(x)={1\over2}\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits x\quad\hbox{et}\quad\forall n\geqslant 1,\quad y_n''+y_n=\sigma y_{n-1},\ y_n(0)=y_n'(0)=0.\]
Exprimer \(y_n\) à l’aide de \(y_{n-1}\) et d’une intégrale.
Montrer : \(|y_n(x)-y_{n-1}(x)|\leqslant\displaystyle{1\over2}\,{(\sigma x)^n\over n\,!}\).
Montrer que \((E')\) a une unique solution sur \([0,b]\).
[planches/ex0965] centrale PSI 2013 Soit \(F\) l’espace vectoriel des fonctions continues et bornées sur \(\left]0,+\infty\right[\). Pour \(f\in F\), on considère l’équation différentielle \((E)\) : \(x^2y''+2y'-2y=f(x)\).
[planches/ex0965]
Trouver les fonctions \(x\mapsto x^r\) solutions de l’équation homogène associée à \((E)\).
Soit \(g(x)=\displaystyle\int_0^x{-tf(t)\over3x^2}\,dt+\int_x^{+\infty}{-xf(t)\over3t^2}\,dt\). Montrer que \(g\) est bien définie sur \(\left]0,+\infty\right[\) puis vérifier que \(g\) est solution de \((E)\).
Quel est le lien entre les deux questions précédentes ?
Montrer que l’application qui envoie \(f\) sur \(g\) définit un endomorphisme de \(F\).
[oraux/ex3002] ens paris MP 2009 Soit \(E\) l’ensemble des fonctions complexes de classe \(C^\infty\) sur \(\mathbf{R}^2\), \(2\pi\)-périodiques par rapport à la première variable. On se donne une fonction complexe \(f_0\) de classe \(C^\infty\) sur \(\mathbf{R}\) et \(2\pi\)-périodique.
[oraux/ex3002]
Trouver \(f\in E\) telle que : \(\displaystyle{\partial f\over\partial t}(x,t)=-i\displaystyle{\partial^2f\over\partial x^2}(x,t)\) et \(\forall x\in\mathbf{R}\), \(f(x,0)=f_0(x)\).
Expliciter une constante \(C\) telle que : \[\int_0^{2\pi}\!\!\int_0^{2\pi}|f(x,t)|^4\,dx\,dt\leqslant C\left(\int_0^{2\pi}|f_0(x)|^2\,dx\right)^{\!2}.\]
[planches/ex1596] ens PSI 2017 Soit \(f\in\mathscr{C}([0,1],\mathbf{R})\) et \(c\in\mathscr{C}([0,1],\mathbf{R}_+)\). On considère le problème aux limites : \[(1)\qquad-u''(x)+c(x)u(x)=f(x),\quad u(0)=u(1).\]
[planches/ex1596]
Pour \(\lambda\in\mathbf{R}\), on considère le système : \[(2)\qquad-u_\lambda(x)+c(x)u_\lambda(x)=f(x),\quad u_\lambda(0)=0,\quad u_\lambda(0)=\lambda.\] Montrer que \((2)\) possède une unique solution \(u_\lambda\) dans \(\mathscr{C}^2([0,1],\mathbf{R})\).
En déduire qu’il existe une unique solution de \((1)\) dans \(\mathscr{C}^2([0,1],\mathbf{R})\).
Indication : On pourra montrer que \(\varphi:\lambda\mapsto u_\lambda(1)\) est affine.
Montrer que si \(f\geqslant 0\), alors \(u\geqslant 0\).
Un exercice sélectionné se reconnaît à sa bordure rouge