[planches/ex1080] ens cachan, ens rennes MP 2016 Soient \(f\) dans \(\mathscr{C}^0([0,1],\mathbf{R}_-^*)\) et \((E)\) l’équation différentielle \(x''+f(t)x=0\) sur \([0,1]\).
[planches/ex1080]
Décrire la structure de l’ensemble des solutions de \((E)\), rappeler le théorème de Cauchy linéaire, mettre le système différentiel associé à \((E)\) sous forme matricielle.
Montrer que si \(x\) est solution de \((E)\) et vérifie \(x(0)=x(1)=0\) alors \(x=0\).
Montrer qu’il existe \(\varepsilon>0\) tel que pour toute solution de \((E)\), on ait : \[\varepsilon^2\int_0^1x(t)^2\,dt\leqslant\varepsilon\int_0^1x'(t)^2\,dt\leqslant\int_0^1(1-t)x(t)^2\,dt.\]
[planches/ex0989] ens paris, ens lyon, ens cachan, ens rennes MP 2014 Soient \(a>0\) et \(f\in\mathscr{C}^1(\left[1,+\infty\right[,\mathbf{R}_+^*)\) telle que \(\mathop{\mathchoice{\hbox{lim}}{\hbox{lim}}{\mathrm{lim}}{\mathrm{lim}}}\limits_{+\infty}f'=a\). On considère \(u\in\mathscr{C}^2(\left[1,+\infty\right[,\mathbf{R})\) bornée et solution de l’équation différentielle \((E)\) : \(y''-\displaystyle{f'\over f}y'-{y\over f^2}=0\).
[planches/ex0989]
Montrer que \(u'(x)=O(1/x)\) quand \(x\rightarrow+\infty\).
Montrer que \(u(x)\rightarrow0\) quand \(x\rightarrow+\infty\).
[planches/ex0923] ens PC 2013 Soient \(\varphi\in\mathscr{C}^\infty(\mathbf{R},\mathbf{R})\) et \(\alpha\in\mathbf{R}\). Résoudre \[(E)\ :\quad(\varphi(x)-\alpha)u''(x)-\varphi''(x)u(x)=0\] lorsque \(\varphi=\alpha\) possède zéro ou une solution.
[planches/ex0923]
Indication : Déterminer une solution simple de \((E)\).
[oraux/ex3174] centrale MP 2011 (avec Maple)
[oraux/ex3174]
Maple
Soit \(f\) une fonction continue de \(\mathbf{R}^2\) dans \(\mathbf{R}\). On suppose qu’il existe \(L>0\) tel que : \(\forall(x,y,t)\in\mathbf{R}^3\), \(|f(t,x)-f(t,y)|\leqslant L|x-y|\). On fixe \(a\), \(b\) dans \(\mathbf{R}\). Si \(x\) est une fonction continue de \(\mathbf{R}\) dans \(\mathbf{R}\), on note \(T(x)\) la fonction définie par : \[\forall t\in\mathbf{R},\quad T(x)(t)=a+bt+\int_0^t(t-s)f(s,x(s))\,ds.\]
Vérifier que \(T(x)\) est de classe \(C^1\) sur \(\mathbf{R}\).
On suppose \(f(t,x)=(2\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits t-2)x\). On prend pour \(y\) la fonction nulle. Tracer, pour \(8\leqslant n\leqslant 12\), le graphe de \(T^n(y)\) sur \([-6,6]\).
Montrer que pour toute \(x\in\mathscr{C}^0(\mathbf{R},\mathbf{R})\) la suite \((T^n(x))\) converge uniformément sur tout segment de \(\mathbf{R}\) vers une fonction \(y\) telle que \(y(0)=a\), \(y'(0)=b\), \(\forall t\in\mathbf{R}\), \(y''(t)=f(t,y(t))\).
[examen/ex2795] ens paris, ens lyon, ens saclay, ens rennes MP 2025 On fixe un intervalle non trivial \(I\).
[examen/ex2795]
Soient \(a\) et \(b\) deux fonctions continues de \(I\) dans \(\mathbf{R}\). Soit \(f\) une solution non nulle sur \(I\) de \(y''+a y'+b y=0\). Montrer que les zéros de \(f\) sont isolés : pour tout zéro \(t_0\) de \(f\) il existe un \(\delta>0\) tel que \(f\) n’ait pas de zéro dans \(\left]t_0-\delta,t_0+\delta\right[\setminus\{t_0\}\).
Soient \(p_1\), \(p_2\) deux fonctions continues de \(I\) dans \(\mathbf{R}\) telles que \(\forall t\in I\), \(p_1(t)\geqslant p_2(t)\). Soient \(f\), \(g\in\mathscr{C}^2(I,\mathbf{R})\setminus\{0\}\) telles que \(f''+p_1f=0\) et \(g''+p_2g=0\). Soient \(t_1<t_2\) deux zéros de \(f\) entre lesquels \(f\) n’admet aucun autre zéro. Montrer qu’il existe un zéro de \(g\) dans \(\left[t_1,t_2\right[\), ainsi que dans \(\left]t_1,t_2\right]\).
Soient \(p\), \(q\) deux fonctions continues de \([0,1]\) dans \(\mathbf{R}\) telles que \(\forall t\in[0,1]\), \(q(t)>0\). Pour \(\lambda\in\mathbf{R}\), on note \(f_\lambda\) la solution sur \([0,1]\) de l’équation différentielle \(y''+(p(t)+\lambda q(t))y=0\) avec la condition initiale \(f_\lambda(0)=0\) et \(f'_\lambda(0)=1\). On note \(N_\lambda\) le nombre de zéros de \(f_\lambda\). Montrer que \(\lambda\mapsto N_\lambda\) est croissante et déterminer ses limites en \(-\infty\) et \(+\infty\).
On admet que \((x,\lambda)\in[0,1]\times\mathbf{R}\mapsto f_\lambda(x)\) est continue. Montrer que l’ensemble \(\{\lambda\in\mathbf{R},\ f_\lambda(1)=0\}\) est l’ensemble des termes d’une suite réelle strictement croissante.
Montrer que \((\lambda,x)\mapsto f_\lambda(x)\) est continue sur \(\mathbf{R}\times[0,1]\).
Le clic droit sur un énoncé ou sur une référence d'exercice permet d'examiner cet exercice sur une page dédiée