[oraux/ex2981] centrale MP 2008 (avec Maple)
[oraux/ex2981]
Maple
Résoudre \(y''+\displaystyle{y\over x^2}=0\) sur \(\left[1,+\infty\right[\) à l’aide de Maple. Existe-t-il des solutions bornées ?
Soit \((E)\) : \(y''+\displaystyle{y\over x^2+4x+3}=0\). On se donne une solution \(f\) bornée de \((E)\) sur \(\left[1,+\infty\right[\). Montrer que \(f'\) admet une limite nulle en \(+\infty\). Existe-t-il des solutions non bornées sur \(\left[1,+\infty\right[\) ?
[oraux/ex3147] polytechnique, espci PC 2011 Soit \(y\) une solution de \(y''(x)=xy(x)\) sur \([0,1]\) telle que \(y(0)=1\) et \(y'(0)=0\). Montrer : \(\forall x\in[0,1]\), \(|y'(x)|+|y(x)|\leqslant e^x\).
[oraux/ex3147]
[planches/ex0989] ens paris, ens lyon, ens cachan, ens rennes MP 2014 Soient \(a>0\) et \(f\in\mathscr{C}^1(\left[1,+\infty\right[,\mathbf{R}_+^*)\) telle que \(\mathop{\mathchoice{\hbox{lim}}{\hbox{lim}}{\mathrm{lim}}{\mathrm{lim}}}\limits_{+\infty}f'=a\). On considère \(u\in\mathscr{C}^2(\left[1,+\infty\right[,\mathbf{R})\) bornée et solution de l’équation différentielle \((E)\) : \(y''-\displaystyle{f'\over f}y'-{y\over f^2}=0\).
[planches/ex0989]
Montrer que \(u'(x)=O(1/x)\) quand \(x\rightarrow+\infty\).
Montrer que \(u(x)\rightarrow0\) quand \(x\rightarrow+\infty\).
[planches/ex0917] ens paris, ens lyon, ens cachan MP 2013 Soient \(\eta\) et \(\varphi\) deux fonctions de classe \(\mathscr{C}^\infty\) et 1-périodiques de \(\mathbf{R}\) dans \(\mathbf{R}\), avec \(\eta\) à valeurs dans \(\mathbf{R}_+^*\) et \((E)\) l’équation différentielle : \(y''-\eta y=\varphi\).
[planches/ex0917]
Montrer que \((E)\) admet au plus une solution 1-périodique.
On suppose \(\eta\) constante. Montrer que \((E)\) possède une solution 1-périodique.
Établir l’existence de \(\alpha>0\) tel que, pour \(\lambda\in\mathbf{R}\) vérifiant \(0<|\lambda|<\alpha\), l’équation \(u''-\lambda\eta u=\varphi\) admette une solution 1-périodique.
Indication : On écrit \(\varphi=\lambda\varphi_1+\varphi_0\) avec \(\varphi_1\) constante et \(\displaystyle\int_0^1\varphi_0=0\). On cherche alors la solution \(u\) sous la forme \(\displaystyle\sum\limits_{n=0}^{+\infty}\lambda^n(u_n+c_n)\) où \(c_n\) est constante de \(u_n\) est une fonction 1-périodique vérifiant \(u_n(0)=0\).
[concours/ex4044] polytechnique pox P 1990 Soit \(f(x)=\displaystyle{\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits x\over x}\).
[concours/ex4044]
Trouver une équation différentielle linéaire, d’ordre \(2\), à coefficients polynomiaux, satisfaite par \(f\).
Résoudre cette équation.
Vous pouvez limiter le nombre de résultats d'une requête, pour en accélérer l'affichage