[oraux/ex2894] centrale MP 2005 Soit \(q\) une fonction continue et positive définie sur \(\mathbf{R}\). On note \((E)\) l’équation différentielle : \(y''-qy=0\).
[oraux/ex2894]
Montrer qu’une solution non nulle de \((E)\) ne s’annule qu’au plus une fois.
Désormais \(q(t)=e^t\). Montrer que les solutions de \((E)\) sont développables en série entière.
Donner l’allure des solutions \(f\) et \(g\) de \(y''-e^ty=0\) vérifiant les conditions initiales \(f(0)=1\), \(f'(0)=0\), \(g(0)=0\) et \(g'(0)=1\).
[oraux/ex3187] centrale PC 2011 (avec Maple)
[oraux/ex3187]
Maple
Soit, pour \(a\in\mathbf{R}\), \((E_a)\) : \((x-1)y''(x)-y'(x)+4a(x-1)^3y(x)=0\).
Donner une condition nécessaire et suffisante sur \(a\) pour qu’il existe une solution non nulle de \((E_a)\) s’annulant en 0 et en 1. On note \((a_k)_{k\geqslant 0}\) la suite strictement croissante des réels ainsi trouvés.
Soit, pour \(k\in\mathbf{N}\), \(\varphi_k:x\mapsto\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(\sqrt{a_k}x(x-2))\).
Si \((f,g)\in\mathscr{C}^0([0,1],\mathbf{R})^2\), on pose \(\langle f,g\rangle=\displaystyle\int_0^12(1-x)f(x)g(x)\,dx\). Montrer que cette application définit un produit scalaire sur \(\mathscr{C}^0([0,1],\mathbf{R})\). Calculer \(\langle\varphi_k,\varphi_j\rangle\) pour \((j,k)\in\mathbf{N}^2\).
Soit \((b_n)_{n\geqslant 0}\in\mathbf{R}^\mathbf{N}\). On suppose que la série de terme général \(b_n\) est absolument convergente. Soit \(F:x\mapsto\displaystyle\sum\limits_{k=0}^{+\infty}b_k\varphi_k(x)\). Montrer que \(F\) est définie et continue sur \(\mathbf{R}\). Exprimer les \(b_k\) à l’aide d’une intégrale faisant intervenir \(F\) et les \((\varphi_n)_{n\geqslant 0}\).
[examen/ex2791] ens paris MP 2025 Soient \((a,b)\in\mathbf{R}^2\) avec \(a<b\), \(\psi\in\mathscr{C}^2([a,b],\mathbf{R}^{+*})\) croissante. Soit \(y\in\mathscr{C}^2([a,b], \mathbf{R})\) non nulle et vérifiant \(y''+\psi(x)y=0\). Montrer que les points où \(|y|\) admet un extremum local forment une suite finie \((a_1,\ldots,a_n)\) (éventuellement vide) et que la suite des valeurs \((|y(a_1)|,\ldots,|y(a_n)|)\) est décroissante.
[examen/ex2791]
[oraux/ex2981] centrale MP 2008 (avec Maple)
[oraux/ex2981]
Résoudre \(y''+\displaystyle{y\over x^2}=0\) sur \(\left[1,+\infty\right[\) à l’aide de Maple. Existe-t-il des solutions bornées ?
Soit \((E)\) : \(y''+\displaystyle{y\over x^2+4x+3}=0\). On se donne une solution \(f\) bornée de \((E)\) sur \(\left[1,+\infty\right[\). Montrer que \(f'\) admet une limite nulle en \(+\infty\). Existe-t-il des solutions non bornées sur \(\left[1,+\infty\right[\) ?
[planches/ex1636] ens PC 2017 Soit \(u\in\mathscr{C}^\infty(\mathbf{R},\mathbf{R})\) telle que \(u(0)=0\) et \(u(x)\rightarrow\ell\in\mathbf{R}\) quand \(x\rightarrow+\infty\). Soient \(c\in\mathbf{C}\setminus\mathbf{R}\) et \((*)\) l’équation différentielle \((u-c)y''=u''y\).
[planches/ex1636]
Déterminer la dimension de l’espace des solutions de \((*)\).
Donner une solution \(\varphi_1\) non nulle et bornée en \(+\infty\) de \((*)\).
Soit \(\varphi_2\) une solution de \((*)\) indépendante de \(\varphi_1\). Peut-on avoir \(\varphi_2\) bornée en \(+\infty\) ?
Que se passe-t-il si \(c\in\mathbf{R}\) ?
Dans la page dédiée à l'examen d'un exercice, vous pouvez choisir de déployer toute sa famille par défaut ou non