[oraux/ex3174] centrale MP 2011 (avec Maple)
[oraux/ex3174]
Maple
Soit \(f\) une fonction continue de \(\mathbf{R}^2\) dans \(\mathbf{R}\). On suppose qu’il existe \(L>0\) tel que : \(\forall(x,y,t)\in\mathbf{R}^3\), \(|f(t,x)-f(t,y)|\leqslant L|x-y|\). On fixe \(a\), \(b\) dans \(\mathbf{R}\). Si \(x\) est une fonction continue de \(\mathbf{R}\) dans \(\mathbf{R}\), on note \(T(x)\) la fonction définie par : \[\forall t\in\mathbf{R},\quad T(x)(t)=a+bt+\int_0^t(t-s)f(s,x(s))\,ds.\]
Vérifier que \(T(x)\) est de classe \(C^1\) sur \(\mathbf{R}\).
On suppose \(f(t,x)=(2\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits t-2)x\). On prend pour \(y\) la fonction nulle. Tracer, pour \(8\leqslant n\leqslant 12\), le graphe de \(T^n(y)\) sur \([-6,6]\).
Montrer que pour toute \(x\in\mathscr{C}^0(\mathbf{R},\mathbf{R})\) la suite \((T^n(x))\) converge uniformément sur tout segment de \(\mathbf{R}\) vers une fonction \(y\) telle que \(y(0)=a\), \(y'(0)=b\), \(\forall t\in\mathbf{R}\), \(y''(t)=f(t,y(t))\).
[planches/ex6154] ens lyon MP 2021 Soit \(k\in\mathbf{R}\). Soit \(y\in\mathscr{C}^2(\mathbf{R},\mathbf{R})\) vérifiant \(y''=(x^3+kx)y\), \(y(0)=1\) et \(y'(0)=0\). Montrer que l’ensemble des zéros de \(y\) est majoré et non minoré.
[planches/ex6154]
[planches/ex9503] polytechnique MP 2023 Soient \(q_1\), \(q_2\) deux fonctions continues de \(\mathbf{R}^+\) dans \(\mathbf{R}\) telles que \(q_1\leqslant q_2\). On considère l’équation différentielle \((E_i)\) : \(y''+q_i(t)\, y=0\) pour \(i\in\{1,2\}\).
[planches/ex9503]
Soient \(y_1\), \(y_2\) des solutions respectives de \((E_1)\) et \((E_2)\) sur \(I\). Soient \(\alpha<\beta\) deux zéros de \(y_1\). Montrer que \(y_2\) s’annule dans \([\alpha,\beta]\).
Soient \(q:\mathbf{R}^+\rightarrow\mathbf{R}\) continue, \(m\), \(M\) deux réels strictement positifs tels que \(m\leqslant q\leqslant M\). Soient \(\alpha<\beta\) deux zéros consécutifs d’une solution non nulle \(x\) de \(y''+q(t)\,y=0\).
Montrer que les zéros de \(x\) forment une suite strictement croissante \((t_n)_{n\in\mathbf{N}}\).
Montrer que \(\displaystyle\frac{\pi}{\sqrt{M}}\leqslant t_{n+1}-t_n\leqslant\frac{\pi}{\sqrt{m}}\) pour tout \(n\in\mathbf{N}\).
[oraux/ex2974] mines PSI 2008 Soient \(p\in\mathscr{C}^0(\mathbf{R},\mathbf{R}_-^*)\) et \((E)\) : \(y''+py=0\). Soit \(f\) une solution de \((E)\).
[oraux/ex2974]
On suppose : \(\forall x\in\mathbf{R}\), \(f(x)>0\). Montrer que \(f\) est non bornée.
On suppose qu’il existe un unique \(a\in\mathbf{R}\) tel que \(f(a)=0\). Montrer que \(f\) est non bornée.
On suppose que \(f\) est bornée. Montrer que \(f\) est identiquement nulle.
[planches/ex1636] ens PC 2017 Soit \(u\in\mathscr{C}^\infty(\mathbf{R},\mathbf{R})\) telle que \(u(0)=0\) et \(u(x)\rightarrow\ell\in\mathbf{R}\) quand \(x\rightarrow+\infty\). Soient \(c\in\mathbf{C}\setminus\mathbf{R}\) et \((*)\) l’équation différentielle \((u-c)y''=u''y\).
[planches/ex1636]
Déterminer la dimension de l’espace des solutions de \((*)\).
Donner une solution \(\varphi_1\) non nulle et bornée en \(+\infty\) de \((*)\).
Soit \(\varphi_2\) une solution de \((*)\) indépendante de \(\varphi_1\). Peut-on avoir \(\varphi_2\) bornée en \(+\infty\) ?
Que se passe-t-il si \(c\in\mathbf{R}\) ?
Vous pouvez signaler le nombre d'énoncés visibles sur chaque page de résultats