[oraux/ex3136] ens PC 2011 Soit \(g\in\mathscr{C}^\infty(\mathbf{R}_+,\mathbf{R})\). On suppose qu’il existe \((\alpha,\beta)\in(\mathbf{R}_+^*)^2\) tel que : \(\forall x\in\mathbf{R}_+\), \(|g(x)|\leqslant\alpha e^{-\beta x}\). Montrer que l’équation différentielle \(u''-(1+g)u=0\) possède une solution non nulle ayant pour limite 0 en \(+\infty\).
[oraux/ex3136]
Indication : Considérer une suite de fonctions \((u_n)_{n\geqslant 0}\) telle que : \(\forall n\in\mathbf{N}\), \(u_{n+1}''-u_{n+1}=gu_n\).
[oraux/ex3051] centrale MP 2009 (avec Maple)
[oraux/ex3051]
Maple
Soient \((E)\) : \((1-x)^3y''=y\) et \(y\) l’unique solution de \((E)\) définie sur \(I=\left]-\infty,1\right[\) vérifiant \(y(0)=0\) et \(y'(0)=1\).
Justifier l’existence de \(y\) ; tracer le graphe de \(y\) à l’aide de la fonction odeplot du package plots.
odeplot
plots
On pose \(a_n=y^{(n)}(0)/n\,!\). Établir que \((a_n)\) vérifie une relation de récurrence liant \(a_n\), \(a_{n-1}\), \(a_{n-1}\) et \(a_{n-3}\).
calculer \(a_n\) pour \(n\in\{0,\ldots,10\}\).
Montrer qu’il existe \(\alpha>0\) tel que : \(\forall n\in\mathbf{N}\), \(|a_n|\leqslant\alpha^n\). Qu’en déduire sur \(y\) ?
Montrer que \(y\) est positive sur \(\left[0,1\right[\).
En déduire que \(y(x)\geqslant x+\displaystyle\int_0^x{x-t\over(1-t)^2}\,dt\).
Calculer cette intégrale avec Maple. Qu’en déduire sur le comportement de \(y\) ?
[planches/ex1056] mines MP 2015 Soient \(q\in\mathscr{C}^0(\mathbf{R},\mathbf{R}_+)\) et \(x\) une solution strictement positive de \(x''+q(t)x=0\). On pose \(f=x'/x\).
[planches/ex1056]
Donner une équation différentielle satisfaite par \(f\).
Montrer que \(f\) est décroissante positive.
Que peut-on dire de l’intégrabilité de \(q\) ?
[concours/ex2392] mines M 1995 Soit \(f:\mathbf{R}_+\rightarrow\mathbf{R}\) une fonction continue telle que \(\displaystyle\int_0^{+\infty}f^2(t)\,dt\) converge. Montrer que toute solution de \(x''(t)+(1+f(t))x(t)=0\) est bornée.
[concours/ex2392]
[equadiff/ex0156] On considère l’équation différentielle linéaire du second ordre : \[(E)\qquad a(x)y''+b(x)y'+c(x)y=f(x),\] où \(a\), \(b\), \(c\) et \(f\) sont continues sur le même domaine de \(\mathbf{R}\), \(a\) ne s’annulant pas sur ce domaine. Soit \(y_1\) une solution particulière de l’équation homogène associée \((E')\). On effectue le changement de fonction inconnue \(y=y_1z\). Reporter cette égalité dans \((E)\) et démontrer que l’on obtient une équation du premier ordre par rapport à \(z'\). En déduire une méthode d’intégration de \((E)\).
[equadiff/ex0156]
Application : intégrer sur \(\mathscr{D}=\mathbf{R}_+^*\) l’équation : \[x^3y''+xy'-y=-e^{1/x},\] en remarquant que \(y_1:x\mapsto x\) est solution de l’équation homogène associée.
Vous pouvez choisir d'afficher ou non des icônes pour savoir si les exercices possèdent une solution