[planches/ex1009] mines MP 2014 Soit \((E)\) l’équation différentielle \[y''+e^xy=0.\]
[planches/ex1009]
Montrer que les solutions de \((E)\) sont bornées sur \(\mathbf{R}_+\).
Les solutions de \((E)\) sont-elles toutes bornées sur \(\mathbf{R}\) ?
[oraux/ex3133] ens lyon MP 2011 Soit \(\varphi\) une solution maximale non identiquement nulle de \(y''+e^xy=0\).
[oraux/ex3133]
Montrer que \(\varphi\) est définie sur \(\mathbf{R}\).
Montrer que l’on peut ranger l’ensemble des zéros de \(\varphi\) sur \(\mathbf{R}_+\) en une suite strictement croissante \((x_n)_{n\in\mathbf{N}}\).
Montrer que \(x_{n+1}-x_n\rightarrow0\) quand \(n\rightarrow+\infty\).
Donner un équivalent de \(x_n\) quand \(n\rightarrow+\infty\).
[oraux/ex3082] polytechnique MP 2010 Soit \(f:\mathbf{R}\rightarrow\mathbf{R}\) une solution non identiquement nulle de l’équation différentielle \((E)\) : \(y''+e^ty=0\). Montrer que \(f\) admet une infinité dénombrable de zéros.
[oraux/ex3082]
[oraux/ex3077] ens cachan MP 2010 Soient \(T\in\mathbf{R}_+^*\) et \(a\in\mathscr{C}^1(\mathbf{R},\mathbf{R})\) une fonction \(T\)-périodique. On pose \(a_0=\displaystyle{1\over T}\int_0^Ta(x)\,dx\). Pour \(\varepsilon>0\), soit \(a_\varepsilon:x\mapsto a(x/\varepsilon)\). Soit \(\varphi\in\mathscr{C}^1([0,1],\mathbf{R})\).
[oraux/ex3077]
Montrer que \(\mathop{\mathchoice{\hbox{lim}}{\hbox{lim}}{\mathrm{lim}}{\mathrm{lim}}}\limits_{\varepsilon\rightarrow0^+}\displaystyle\int_0^1a_\varepsilon(u)\varphi(u)\, du=a_0\displaystyle\int_0^1\varphi(u)\,du\).
On suppose désormais qu’il existe \(\alpha>0\) tel que \(\forall x\in\mathbf{R}\), \(a(x)\geqslant\alpha\). Soit \(f\in\mathscr{C}^0([0,1],\mathbf{R})\).
Soit \(\varepsilon>0\). Montrer qu’il existe une unique \(u_\varepsilon\in\mathscr{C}^2([0,1],\mathbf{R})\) solution du problème \((a_\varepsilon u')'=f\) et \(u(0)=u(1)=0\).
Que dire de \(u_\varepsilon\) lorsque \(\varepsilon\rightarrow0^+\) ?
[planches/ex0996] polytechnique MP 2014 Soit \(q:\mathbf{R}_+\rightarrow\mathbf{R}\) une fonction continue telle que \(t\mapsto tq(t)\) soit intégrable sur \(\mathbf{R}_+\). Soit \(y:\mathbf{R}_+\rightarrow\mathbf{R}\) une fonction deux fois dérivable telle que \(y''+qy=0\). Montrer successivement :
[planches/ex0996]
que \(t\mapsto\displaystyle{y(t)\over t}\) est bornée au voisinage de \(+\infty\) ;
que \(y'\) a une limite finie en \(+\infty\) ;
que \(t\mapsto\displaystyle{y(t)\over t}\) a une limite finie en \(+\infty\).
Vous pouvez paramétrer ce qui s'affiche lorsque vous survolez une référence d'exercice dans un tableau, voire ne rien afficher