[planches/ex1009] mines MP 2014 Soit \((E)\) l’équation différentielle \[y''+e^xy=0.\]
[planches/ex1009]
Montrer que les solutions de \((E)\) sont bornées sur \(\mathbf{R}_+\).
Les solutions de \((E)\) sont-elles toutes bornées sur \(\mathbf{R}\) ?
[oraux/ex3142] polytechnique MP 2011 Soit \(a\) dans \(\left]0,\pi\right[\).
[oraux/ex3142]
Déterminer \(y\) de classe \(C^2\) de \(\mathbf{R}\) dans \(\mathbf{R}\) telle que : \(y(0)=a\), \(y'(0)=0\), \(y''=-y\).
Soit \(x\) la solution maximale du problème de Cauchy \(x''=-\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits x\), \(x(0)=a\), \(x'(0)=0\). Montrer que \(x\) est définie sur \(\mathbf{R}\) et bornée par \(a\) sur \(\mathbf{R}\).
Trouver \(C>0\) telle que : \(\forall t\in\mathbf{R}\), \(|x(t)-y(t)|\leqslant Ct^2\).
[planches/ex8133] mines MP 2022 Soit \(f:\mathbf{R}_+\longrightarrow\mathbf{R}_+\) continue. On se donne \(c\geqslant 0\), on pose \(F:x\longmapsto c+\displaystyle\int_0^xf(t)\,dt\) et on suppose que \(\forall x\in\mathbf{R}_+\), \(xf(x)\leqslant F(x)\).
[planches/ex8133]
Étudier les variations de \(x\longmapsto\displaystyle{F(x)\over x}\) sur \(\mathbf{R}_+^*\) et en déduire que \(f\) est bornée.
Soit \(g\) une solution sur \(\mathbf{R}_+\) de l’équation différentielle \(y''+xy=0\). En s’intéressant à \(g^2\), montrer que \(g\) est bornée.
[oraux/ex3082] polytechnique MP 2010 Soit \(f:\mathbf{R}\rightarrow\mathbf{R}\) une solution non identiquement nulle de l’équation différentielle \((E)\) : \(y''+e^ty=0\). Montrer que \(f\) admet une infinité dénombrable de zéros.
[oraux/ex3082]
[equadiff/ex0881] Soit \((E)\) : \(y''+ay'+by=0\) une équation différentielle linéaire du deuxième ordre homogène à coefficients non forcément constants, de classe \(C^1\) sur l’intervalle \(I\).
[equadiff/ex0881]
Écrire l’équation \((E')\) transformé de \((E)\) en posant \(y=uz\).
Déterminer une équation différentielle simple que doit vérifier la fonction \(u\) de sorte de \((E')\) ne contienne plus de terme en \(z'\), et résoudre cette équation en \(u\).
Montrer que \((E')\) peut se mettre sous la forme : \(z''=cz\), et exprimer la fonction \(c\) en fonction de \(a\) et \(b\).
Déterminer \(u\) et \(c\) quand \(a\) et \(b\) sont constants.
Vous pouvez pré-filtrer l'affichage des exercices, en imposant par exemple des exercices d'une année en particulier