[oraux/ex3012] polytechnique MP 2009 Soient \((a,b)\in\mathbf{R}^2\) avec \(a<b\) et \(f\in\mathscr{C}^0([a,b],\mathbf{R})\). On suppose qu’il existe \(u\) dans \(\mathscr{C}^2([a,b],\mathbf{R})\) non identiquement nulle telle que : \(u''+fu=0\) et \(u(a)=u(b)=0\). Montrer : \(\displaystyle\int_a^b|f(t)|\,dt\geqslant(b-a)/4\).
[oraux/ex3012]
[planches/ex1009] mines MP 2014 Soit \((E)\) l’équation différentielle \[y''+e^xy=0.\]
[planches/ex1009]
Montrer que les solutions de \((E)\) sont bornées sur \(\mathbf{R}_+\).
Les solutions de \((E)\) sont-elles toutes bornées sur \(\mathbf{R}\) ?
[planches/ex3377] polytechnique, espci PC 2018 Soit \(q\in\mathscr{C}^1(\mathbf{R}_+,\mathbf{R})\) telle que \(q>0\), \(q'>0\). Montrer que les solutions de l’équation différentielle \(y''+qy=0\) sont bornées sur \(\mathbf{R}_+\).
[planches/ex3377]
[planches/ex1104] mines MP 2016 Soit \(q:\mathbf{R}_+\rightarrow\mathbf{R}\) de classe \(\mathscr{C}^1\) telle que \(\forall x\in\mathbf{R}_+\), \(q(x)>0\) et \(q'(x)>0\). Montrer que les solutions de \(y''+qy=0\) sont bornées sur \(\mathbf{R}_+\).
[planches/ex1104]
Indication : Multiplier par \(y'/q\).
[oraux/ex3082] polytechnique MP 2010 Soit \(f:\mathbf{R}\rightarrow\mathbf{R}\) une solution non identiquement nulle de l’équation différentielle \((E)\) : \(y''+e^ty=0\). Montrer que \(f\) admet une infinité dénombrable de zéros.
[oraux/ex3082]
Un exercice sélectionné se reconnaît à sa bordure rouge