[concours/ex4169] mines M 1990 Soit \(f\in\mathscr{C}(\mathbf{R}_+,\mathbf{R})\) telle que \(\displaystyle\int_0^{+\infty}\left|f\right|\) converge. L’équation \(y''+fy=0\) a-t-elle toutes ses solutions bornées ?
[concours/ex4169]
[planches/ex6826] mines MP 2021 Soient \(f\in\mathscr{C}^0(\mathbf{R},\mathbf{R})\) et \(S\) l’ensemble des solutions de \(y''+fy=0\). On suppose \(f\) intégrable sur \(\mathbf{R}\).
[planches/ex6826]
Soient \(y_1\), \(y_2\in S\) et \(w=y_1y_2'-y_1'y_2\). Que peut-on dire de \(w\) ?
Montrer que \(S\) contient des fonctions non bornées.
[oraux/ex2800] centrale 2003 Soit \(q:\mathbf{R}_+\rightarrow\mathbf{R}\) une application continue et intégrable sur \(\mathbf{R}_+\). Soit \((E)\) l’équation différentielle \(y''+qy=0\).
[oraux/ex2800]
Si \(y\) est une solution bornée de \((E)\), que dire de \(y'\) en \(+\infty\) ?
Montrer qu’il existe des solutions de \((E)\) non bornées.
[oraux/ex2913] ccp PC 2005 Soient \((a,b,c)\in\mathbf{R}^3\) et \((1)\) l’équation différentielle : \(ax^2y''(x)+bxy'(x)+cy(x)=0\), dont on considérera les solutions sur \(\left]0,+\infty\right[\).
[oraux/ex2913]
Justifier le changement de variable \(t=\mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits x\) et résoudre \((1)\).
Résoudre sur \(\mathbf{R}_+^*\) suivant les valeurs de \(a\) : \(x^2y''(x)+xy'(x)+y(x)=\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(a\mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits x)\).
[equadiff/ex0880] Équation d’Euler
[equadiff/ex0880]
On considère : \[(E)\qquad x^2y''+a\,xy'+by=c(x),\] avec \(a\), \(b\in\mathbf{R}\). On pose \(x=\varepsilon e^t\) avec \(\varepsilon=\pm1\) et \(y(x)=z(t)\).
Montrer que l’équation différentielle en \(z\), transformée de \((E)\) par ce changement de variable, est à coefficients constants.
Résoudre par exemple \(x^2y''-5xy'+9y=x+1\).
Sur les pages de résultats et selon les options d'affichage choisies, vous pouvez déployer les familles des exercices affichés