[oraux/ex3153] mines MP 2011 Soit \((E)\) l’équation différentielle \(y''=(x^4+1)y\).
[oraux/ex3153]
Montrer que cette équation possède une unique solution \(f:\mathbf{R}\rightarrow\mathbf{R}\) telle que \(f(0)=f'(0)=1\).
Montrer que \(g=f^2\) est convexe.
Montrer : \(\forall x\in\mathbf{R}_+\), \(f(x)\geqslant 1\).
Montrer que \(1/g\) est intégrable sur \(\mathbf{R}_+\).
Montrer que \(x\mapsto f(x)\displaystyle\int_x^{+\infty}{dt\over g(t)}\) est également solution de \((E)\).
[planches/ex1115] centrale PSI 2016 On considère l’équation différentielle \(y''=x^4y\) (?).
[planches/ex1115]
Montrer qu’il existe une unique solution \(f\) telle que \(f(0)=f'(0)=1\).
On admet que \(1/f^2\) est définie et intégrable sur \(\mathbf{R}_+\). Montrer que \(g:x\mapsto f(x)\displaystyle\int_x^{+\infty}{dt\over f(t)^2}\) est aussi solution de l’équation étudiée.
Montrer le résultat admis dans la question précédente.
[oraux/ex3141] polytechnique MP 2011 Soit \(f\in\mathscr{C}^1(\mathbf{R}_+,\mathbf{R})\) de limite nulle en \(+\infty\) et de dérivée intégrable sur \(\mathbf{R}_+\). Montrer que toutes les solutions de l’équation différentielle \(y''+(1+f(t))y=0\) sont bornées sur \(\mathbf{R}_+\).
[oraux/ex3141]
[oraux/ex3042] mines PC 2009 Soient \(\varphi\in\mathscr{C}^0([a,b],\mathbf{R})\), \(k\in\mathbf{R}_+^*\) et \((E)\) : \(y''+\varphi(x)y'-ky=0\). On suppose que \(f\) est une solution de \((E)\) telle que \(f(a)=f(b)=0\). Montrer que \(f\) est identiquement nulle.
[oraux/ex3042]
[examen/ex1793] mines MP 2024 Soit \(f\) une fonction continue et bornée de \(\mathbf{R}\) dans \(\mathbf{R}\). Déterminer les fonctions \(y\) de \(\mathbf{R}\) dans \(\mathbf{R}\), de classe \(\mathscr{C}^2\) et bornées, telles que \(y''-y=f\).
[examen/ex1793]
Sur les pages de résultats, vous pouvez déterminer le nombre d'énoncés affichés