[planches/ex1115] centrale PSI 2016 On considère l’équation différentielle \(y''=x^4y\) (?).
[planches/ex1115]
Montrer qu’il existe une unique solution \(f\) telle que \(f(0)=f'(0)=1\).
On admet que \(1/f^2\) est définie et intégrable sur \(\mathbf{R}_+\). Montrer que \(g:x\mapsto f(x)\displaystyle\int_x^{+\infty}{dt\over f(t)^2}\) est aussi solution de l’équation étudiée.
Montrer le résultat admis dans la question précédente.
[planches/ex1114] centrale PSI 2016 On considère l’équation différentielle \[(1)\quad y''=(1+x^4)y.\]
[planches/ex1114]
Montrer que \((1)\) possède une unique solution \(y\) telle que \(y(0)=y'(0)=1\).
Soit \(f\) une solution de \((1)\). On suppose \(\displaystyle{1\over f^2}\) intégrable. Montrer que \(x\mapsto\displaystyle\int_x^{+\infty}{1\over f^2(t)}\,dt\) est également solution de \((1)\) (?).
Montrer que si \(f\) solution de \((E)\) vérifie \(f(0)=f'(0)=1\) alors \(\displaystyle{1\over f^2}\) est intégrable.
[oraux/ex5086] polytechnique MP 2012
[oraux/ex5086]
Soient \(y \in{\cal C}^0( \mathbf{R}^+,\mathbf{R})\), \(a\in\mathbf{R}^+\), \(g \in{\cal C}^0( \mathbf{R}^+,\mathbf{R}^+)\) et \(G : t \mapsto \displaystyle\int_0^t g(s)\,ds\). On suppose que \(\forall t \in \mathbf{R}^+\), \(y(t) \leqslant a+\displaystyle\int_0^t y(s)\,g(s)\,ds\). Montrer que \(\forall t \in \mathbf{R}^+, \; y(t) \leqslant a \,e^{G(t)}.\)
Soit \(f \in{\cal C}^1(\mathbf{R}^+,\mathbf{R})\) de limite \(1\) en \(+\infty\) et dont la dérivée est intégrable sur \(\mathbf{R}^+\). Soit \(h\) une solution maximale de l’équation différentielle \(x''(t)+f(t)\,x(t)=0\). Montrer que \(h\) et \(h'\) sont bornées.
[oraux/ex3141] polytechnique MP 2011 Soit \(f\in\mathscr{C}^1(\mathbf{R}_+,\mathbf{R})\) de limite nulle en \(+\infty\) et de dérivée intégrable sur \(\mathbf{R}_+\). Montrer que toutes les solutions de l’équation différentielle \(y''+(1+f(t))y=0\) sont bornées sur \(\mathbf{R}_+\).
[oraux/ex3141]
[planches/ex8628] centrale PSI 2022 (avec Python)
[planches/ex8628]
Python
Soit \(q:\mathbf{R}_+\longrightarrow\mathbf{R}\) continue. On s’intéresse à l’équation différentielle \((E_{a,b})\) : \(y''+(1+q)y=0\), \(y(0)=a\), et \(y'(0)=b\).
Tracer avec Python les solutions pour \((a,b)\in\{(1,0),(0,1)\}\) et pour les fonctions \(q:t\longmapsto\displaystyle{1\over\sqrt{1+t}}\), \(q:t\longmapsto\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(t)\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\left(\displaystyle{1\over t}\right)\), \(q:t\longmapsto\displaystyle{1\over1+t^2}\). et \(q:t\longmapsto\displaystyle{-t^2\over2(1+t^2)}\). On tracera ces solutions sur l’intervalle \([0,50]\).
Pour quelles fonctions \(q\) la solution semble-t-elle bornée ?
On suppose dans cette question que \(q\) est intégrable sur \(\mathbf{R}_+\).
Soit \(z:x\longmapsto\displaystyle\int_0^x\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(x-t)f(t)\,dt\) avec \(f\) continue, intégrable sur \(\mathbf{R}_+\). Calculer \(z''+z\).
Soit \(y\) une solution de \((E_{a,b})\).
Montrer que, pour \(t\in\mathbf{R}_+\), \(0\leqslant|y(t)|\leqslant|a|+|b|+\displaystyle\int_0^x|q(t)|\,|y(t)|\,dt\).
En déduire que \(y\) est bornée.
La condition \(q\) intégrable est-elle suffisante/nécessaire pour que les solutions de \((E_{a,b})\) soient bornées ?
Vous pouvez choisir d'afficher tous les résultats d'une requête de façon individuelle, ou en les regroupant par familles d'exercices