[concours/ex2124] ccp, tpe, int, ivp MP 1999 Soient \(f\) et \(g\) solutions réelles non nulles de \(y''+a(x)y'+b(x)y=0\), \(a\) et \(b\) étant des fonctions réelles continues. Montrer qu’entre deux zéros de \(f\) il y a exactement un zéro de \(g\).
[concours/ex2124]
[oraux/ex4921] ens paris MP 2012 Soit \(f \in{\cal C}^0(\mathbf{R}^+ ,\mathbf{R})\) telle que \(1-f\) soit intégrable. Montrer que pour tout \((\alpha_1,\alpha_2)\in \mathbf{C}^2\), il existe une solution \(x\) de l’équation différentielle \(x''+f(t)\,x=0\) telle que la fonction \(t \mapsto x(t)-\alpha_1 e^{it}-\alpha_2 e^{-it}\) ait une limite nulle en \(+\infty\).
[oraux/ex4921]
[concours/ex0100] polytechnique MP 1996 Soit \(I\) un intervalle de \(\mathbf{R}\) et \(A\) (resp. \(B\)) une application \(C^1\) (resp. \(C^0\)) de \(I\) dans \(\mathbf{R}\). Donner une condition nécessaire et suffisante pour que l’équation différentielle \(y''+A(x)y'+B(x)y=0\) admette deux solutions \(y_1\) et \(y_2\) telles que \(y_2=xy_1\).
[concours/ex0100]
Résoudre \(y''+2xy'+(1+x^2)y=xe^{-x^2/2}\).
[oraux/ex5532] mines PC 2012 Soient \(\varphi\in{\cal C}^1(\mathbf{R}^+,\mathbf{R}^{+*})\) croissante et \((E)\) l’équation \((E)\) : \(x''(t)+\varphi(t)\, x(t)=0\). Montrer que \(x\) est bornée.
[oraux/ex5532]
Indication : On multipliera par \(x'/\varphi\).
[oraux/ex3103] mines PC 2010 Soit \(\varphi\in\mathscr{C}^1(\mathbf{R}_+,\mathbf{R}_+^*)\) strictement croissante. Montrer que toute solution de l’équation différentielle \((E)\) : \(y''+\varphi y=0\) est bornée sur \(\mathbf{R}\).
[oraux/ex3103]
Un exercice sélectionné se reconnaît à sa bordure rouge