[planches/ex4988] mines MP 2019 Soit \(q\) une fonction continue de \([0,1]\) dans \(\mathbf{R}\), \(y\) une fonction de classe \(\mathscr{C}^2\) de \([0,1]\) dans \(\mathbf{R}\), non identiquement nulle, telle que \(y''+qy=0\). Montrer que l’ensemble des zéros de \(y\) est fini.
[planches/ex4988]
[oraux/ex2884] centrale MP 2005
[oraux/ex2884]
Soient \(a\), \(b\), \(c\) trois fonctions de classe \(\mathscr{C}^\infty\) sur un intervalle \(I\) de \(\mathbf{R}\). À quelle condition l’équation \(ay''+by'+cy=0\) admet-elle deux solutions \(y_1\) et \(y_1\) vérifiant \(y_1y_2=1\) ?
Soit \((E)\) l’équation différentielle : \((x-1)y''(x)+xy'(x)-4y(x)=0\). Montrer que la condition précédente est réalisée. Étudier les solutions de \((E)\) sur \(\mathbf{R}\).
[planches/ex1060] centrale MP 2015 On considère l’équation différentielle \[(E_1)\ :\quad x''+p(t)x'+q(t)x=0.\]
[planches/ex1060]
Soient \(u_1\) et \(u_2\) deux solutions de \((E_1)\) telles que \(u_1u_2=1\). On pose \(z_i=\displaystyle{u'_i\over u_i}\). Montrer que les \(z_i\) sont deux solutions opposées d’une équation différentielle non linéaire \((E_2)\).
En déduire une condition néessaire et suffisante sur \(p\) et \(q\) pour que \((E_1)\) admette deux solutions \(u_1\) et \(u_2\) telles que \(u_1u_2=1\).
Résoudre \((1+\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits(4t))x''-2\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(4t)x'-8x=0\).
[planches/ex5561] ccinp MP 2019 Soit \(q\) une fonction continue de \(\mathbf{R}_+\) dans \(\mathbf{R}\), \(y\) une fonction non identiquement nulle sur \(\mathbf{R}_+\) telle que \(y''+qy=0\). Montrer que les zéros de \(y\) sont isolés. En déduire que, si \(S\) est un segment de \(\mathbf{R}\), \(y\) n’a qu’un nombre fini de zéros sur \(S\).
[planches/ex5561]
[oraux/ex3149] polytechnique, espci PC 2011 Soient \(I\) un intervalle ouvert de \(\mathbf{R}\), \(a\) et \(b\) dans \(\mathscr{C}^0(I,\mathbf{R})\) et \((E)\) l’équation différentielle \(y''+ay'+by=0\).
[oraux/ex3149]
Soit \(f\) une solution non nulle de \((E)\). Montrer que les zéros de \((E)\) sont isolés.
Soient \(f\) et \(g\) deux solutions non nulles de \((E)\). On suppose que \(f\) et \(g\) ont un zéro commun. Montrer que \(f\) et \(g\) sont proportionnelles.
Soient \(f\) et \(g\) deux solutions linéairement indépendantes de \((E)\). Montrer qu’entre deux zéros consécutifs de \(f\) il y a exactement un zéro de \(g\).
Le clic droit sur un énoncé ou sur une référence d'exercice permet d'examiner cet exercice sur une page dédiée