[oraux/ex2884] centrale MP 2005
[oraux/ex2884]
Soient \(a\), \(b\), \(c\) trois fonctions de classe \(\mathscr{C}^\infty\) sur un intervalle \(I\) de \(\mathbf{R}\). À quelle condition l’équation \(ay''+by'+cy=0\) admet-elle deux solutions \(y_1\) et \(y_1\) vérifiant \(y_1y_2=1\) ?
Soit \((E)\) l’équation différentielle : \((x-1)y''(x)+xy'(x)-4y(x)=0\). Montrer que la condition précédente est réalisée. Étudier les solutions de \((E)\) sur \(\mathbf{R}\).
[planches/ex1038] ens MP 2014 Soient \(k\in\mathbf{N}\) et l’équation différentielle \((1-t^2)x''-2tx'+k(k+1)x=0\).
[planches/ex1038]
Montrer que cette équation admet une solution \(x_k\) non nulle, sur \(\mathbf{R}\).
Montrer que toute solution de classe \(\mathscr{C}^2\) sur \([-1,1]\) est proportionnelle à \(x_k\).
[planches/ex1022] centrale MP 2014 Soient \(I\) un intervalle de \(\mathbf{R}\) non vide et non réduit à un point, \(p\), \(q:I\rightarrow\mathbf{R}\) continues et \((E)\) : \(y''+py'+qy=0\). On suppose \(q\neq0\). On étudie l’existence de deux solutions, notées \(y_1\) et \(y_2\) de \((E)\), inverses l’une de l’autre, c’est-à-dire que \(y_1y_2=1\).
[planches/ex1022]
Si \(p\) et \(q\) sont constantes, donner une condition suffisante d’existence.
On considère \((E_1)\) : \(y''+\displaystyle{y'\over x}-{y\over4x^2}=0\) sur \(\left]1,+\infty\right[\) et \((E_2)\) : \(y''-\displaystyle{y'\over x\mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits x}-y{(\mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits x)^2\over4}=0\) sur \(\mathbf{R}_+^*\). Trouver pour \((E_1)\) puis pour \((E_2)\) un couple de solutions inverses l’une de l’autre.
On revient à l’équation générale \((E)\) et on suppose qu’elle admet un couple de solutions inverses l’une de l’autre \((y_1,y_2)\). On note \(W\) le wronskien de \((y_1,y_2)\).
Montrer que \(y_1\) et \(y_2\) sont linéairement indépendantes. Qu’en déduit-on pour \(W\) ?
Exprimer \(W\) en fonction de \(y_1\).
Montrer que \(W'+pW=0\).
Donner une condition nécessaire et suffisante sur \((p,q)\) pour que \((E)\) possède un couple de solutions inverses l’une de l’autre.
[oraux/ex3149] polytechnique, espci PC 2011 Soient \(I\) un intervalle ouvert de \(\mathbf{R}\), \(a\) et \(b\) dans \(\mathscr{C}^0(I,\mathbf{R})\) et \((E)\) l’équation différentielle \(y''+ay'+by=0\).
[oraux/ex3149]
Soit \(f\) une solution non nulle de \((E)\). Montrer que les zéros de \((E)\) sont isolés.
Soient \(f\) et \(g\) deux solutions non nulles de \((E)\). On suppose que \(f\) et \(g\) ont un zéro commun. Montrer que \(f\) et \(g\) sont proportionnelles.
Soient \(f\) et \(g\) deux solutions linéairement indépendantes de \((E)\). Montrer qu’entre deux zéros consécutifs de \(f\) il y a exactement un zéro de \(g\).
[oraux/ex4921] ens paris MP 2012 Soit \(f \in{\cal C}^0(\mathbf{R}^+ ,\mathbf{R})\) telle que \(1-f\) soit intégrable. Montrer que pour tout \((\alpha_1,\alpha_2)\in \mathbf{C}^2\), il existe une solution \(x\) de l’équation différentielle \(x''+f(t)\,x=0\) telle que la fonction \(t \mapsto x(t)-\alpha_1 e^{it}-\alpha_2 e^{-it}\) ait une limite nulle en \(+\infty\).
[oraux/ex4921]
Vous pouvez produire plusieurs PDF en répartissant les exercices choisis