[oraux/ex3149] polytechnique, espci PC 2011 Soient \(I\) un intervalle ouvert de \(\mathbf{R}\), \(a\) et \(b\) dans \(\mathscr{C}^0(I,\mathbf{R})\) et \((E)\) l’équation différentielle \(y''+ay'+by=0\).
[oraux/ex3149]
Soit \(f\) une solution non nulle de \((E)\). Montrer que les zéros de \((E)\) sont isolés.
Soient \(f\) et \(g\) deux solutions non nulles de \((E)\). On suppose que \(f\) et \(g\) ont un zéro commun. Montrer que \(f\) et \(g\) sont proportionnelles.
Soient \(f\) et \(g\) deux solutions linéairement indépendantes de \((E)\). Montrer qu’entre deux zéros consécutifs de \(f\) il y a exactement un zéro de \(g\).
[planches/ex5561] ccinp MP 2019 Soit \(q\) une fonction continue de \(\mathbf{R}_+\) dans \(\mathbf{R}\), \(y\) une fonction non identiquement nulle sur \(\mathbf{R}_+\) telle que \(y''+qy=0\). Montrer que les zéros de \(y\) sont isolés. En déduire que, si \(S\) est un segment de \(\mathbf{R}\), \(y\) n’a qu’un nombre fini de zéros sur \(S\).
[planches/ex5561]
[oraux/ex4921] ens paris MP 2012 Soit \(f \in{\cal C}^0(\mathbf{R}^+ ,\mathbf{R})\) telle que \(1-f\) soit intégrable. Montrer que pour tout \((\alpha_1,\alpha_2)\in \mathbf{C}^2\), il existe une solution \(x\) de l’équation différentielle \(x''+f(t)\,x=0\) telle que la fonction \(t \mapsto x(t)-\alpha_1 e^{it}-\alpha_2 e^{-it}\) ait une limite nulle en \(+\infty\).
[oraux/ex4921]
[planches/ex1060] centrale MP 2015 On considère l’équation différentielle \[(E_1)\ :\quad x''+p(t)x'+q(t)x=0.\]
[planches/ex1060]
Soient \(u_1\) et \(u_2\) deux solutions de \((E_1)\) telles que \(u_1u_2=1\). On pose \(z_i=\displaystyle{u'_i\over u_i}\). Montrer que les \(z_i\) sont deux solutions opposées d’une équation différentielle non linéaire \((E_2)\).
En déduire une condition néessaire et suffisante sur \(p\) et \(q\) pour que \((E_1)\) admette deux solutions \(u_1\) et \(u_2\) telles que \(u_1u_2=1\).
Résoudre \((1+\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits(4t))x''-2\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(4t)x'-8x=0\).
[oraux/ex2884] centrale MP 2005
[oraux/ex2884]
Soient \(a\), \(b\), \(c\) trois fonctions de classe \(\mathscr{C}^\infty\) sur un intervalle \(I\) de \(\mathbf{R}\). À quelle condition l’équation \(ay''+by'+cy=0\) admet-elle deux solutions \(y_1\) et \(y_1\) vérifiant \(y_1y_2=1\) ?
Soit \((E)\) l’équation différentielle : \((x-1)y''(x)+xy'(x)-4y(x)=0\). Montrer que la condition précédente est réalisée. Étudier les solutions de \((E)\) sur \(\mathbf{R}\).
Vous pouvez choisir d'afficher ou non des icônes pour savoir si les exercices possèdent une solution