[oraux/ex2850] ens cachan MP 2005 Soit \(q:\mathbf{R}\rightarrow\mathbf{R}\) une fonction continue, positive, de période \(\pi\) et non nulle. Soit \(\mathscr{E}\) l’ensemble des solutions de : \(y''+qy=0\).
[oraux/ex2850]
Soit \(\varphi\in\mathscr{E}\). Montrer que l’ensemble des zéros de \(\varphi\) n’est ni majoré ni minoré.
On suppose \(\varphi\) non nulle ; Soit \(\psi\in\mathscr{E}\) non proportionnelle à \(\varphi\). Montrer que les zéros de \(\psi\) séparent ceux de \(\varphi\).
[planches/ex1022] centrale MP 2014 Soient \(I\) un intervalle de \(\mathbf{R}\) non vide et non réduit à un point, \(p\), \(q:I\rightarrow\mathbf{R}\) continues et \((E)\) : \(y''+py'+qy=0\). On suppose \(q\neq0\). On étudie l’existence de deux solutions, notées \(y_1\) et \(y_2\) de \((E)\), inverses l’une de l’autre, c’est-à-dire que \(y_1y_2=1\).
[planches/ex1022]
Si \(p\) et \(q\) sont constantes, donner une condition suffisante d’existence.
On considère \((E_1)\) : \(y''+\displaystyle{y'\over x}-{y\over4x^2}=0\) sur \(\left]1,+\infty\right[\) et \((E_2)\) : \(y''-\displaystyle{y'\over x\mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits x}-y{(\mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits x)^2\over4}=0\) sur \(\mathbf{R}_+^*\). Trouver pour \((E_1)\) puis pour \((E_2)\) un couple de solutions inverses l’une de l’autre.
On revient à l’équation générale \((E)\) et on suppose qu’elle admet un couple de solutions inverses l’une de l’autre \((y_1,y_2)\). On note \(W\) le wronskien de \((y_1,y_2)\).
Montrer que \(y_1\) et \(y_2\) sont linéairement indépendantes. Qu’en déduit-on pour \(W\) ?
Exprimer \(W\) en fonction de \(y_1\).
Montrer que \(W'+pW=0\).
Donner une condition nécessaire et suffisante sur \((p,q)\) pour que \((E)\) possède un couple de solutions inverses l’une de l’autre.
[planches/ex1060] centrale MP 2015 On considère l’équation différentielle \[(E_1)\ :\quad x''+p(t)x'+q(t)x=0.\]
[planches/ex1060]
Soient \(u_1\) et \(u_2\) deux solutions de \((E_1)\) telles que \(u_1u_2=1\). On pose \(z_i=\displaystyle{u'_i\over u_i}\). Montrer que les \(z_i\) sont deux solutions opposées d’une équation différentielle non linéaire \((E_2)\).
En déduire une condition néessaire et suffisante sur \(p\) et \(q\) pour que \((E_1)\) admette deux solutions \(u_1\) et \(u_2\) telles que \(u_1u_2=1\).
Résoudre \((1+\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits(4t))x''-2\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(4t)x'-8x=0\).
[oraux/ex3149] polytechnique, espci PC 2011 Soient \(I\) un intervalle ouvert de \(\mathbf{R}\), \(a\) et \(b\) dans \(\mathscr{C}^0(I,\mathbf{R})\) et \((E)\) l’équation différentielle \(y''+ay'+by=0\).
[oraux/ex3149]
Soit \(f\) une solution non nulle de \((E)\). Montrer que les zéros de \((E)\) sont isolés.
Soient \(f\) et \(g\) deux solutions non nulles de \((E)\). On suppose que \(f\) et \(g\) ont un zéro commun. Montrer que \(f\) et \(g\) sont proportionnelles.
Soient \(f\) et \(g\) deux solutions linéairement indépendantes de \((E)\). Montrer qu’entre deux zéros consécutifs de \(f\) il y a exactement un zéro de \(g\).
[planches/ex1038] ens MP 2014 Soient \(k\in\mathbf{N}\) et l’équation différentielle \((1-t^2)x''-2tx'+k(k+1)x=0\).
[planches/ex1038]
Montrer que cette équation admet une solution \(x_k\) non nulle, sur \(\mathbf{R}\).
Montrer que toute solution de classe \(\mathscr{C}^2\) sur \([-1,1]\) est proportionnelle à \(x_k\).
Vous pouvez choisir la fonte des exercices lors de la compilation des PDF