[oraux/ex2850] ens cachan MP 2005 Soit \(q:\mathbf{R}\rightarrow\mathbf{R}\) une fonction continue, positive, de période \(\pi\) et non nulle. Soit \(\mathscr{E}\) l’ensemble des solutions de : \(y''+qy=0\).
[oraux/ex2850]
Soit \(\varphi\in\mathscr{E}\). Montrer que l’ensemble des zéros de \(\varphi\) n’est ni majoré ni minoré.
On suppose \(\varphi\) non nulle ; Soit \(\psi\in\mathscr{E}\) non proportionnelle à \(\varphi\). Montrer que les zéros de \(\psi\) séparent ceux de \(\varphi\).
[planches/ex2137] mines MP 2017 Soient \(q\) une fonction continue de \([0,1]\) dans \(\mathbf{R}_+\), \(f\) une fonction continue de \([0,1]\) dans \(\mathbf{R}\), \((a,b)\in\mathbf{R}^2\). Montrer qu’il existe une unique fonction \(y\) de \([0,1]\) dans \(\mathbf{R}\) de classe \(\mathscr{C}^2\) telle que \(y''-qy=f\) et \((y(0),y(1))=(a,b)\).
[planches/ex2137]
[planches/ex1053] polytechnique, espci PC 2015 Soient \(a\) et \(b\) dans \(\mathscr{C}^1(\mathbf{R},\mathbf{R})\) et \((E)\) l’équation différentielle \(y''+ay'+by=0\). Donner une condition nécessaire et suffisante sur \(a\) et \(b\) pour qu’il existe \(f\) et \(g\) solutions de \((E)\) telles que \(fg=1\).
[planches/ex1053]
[planches/ex0988] ens cachan, ens rennes MP 2014 Soit \(I\) un intervalle contenant au moins deux points, et \(a\) et \(b\) deux fonctions continues de \(I\) dans \(\mathbf{R}\). On considère une solution non nulle \(\varphi\) de l’équation différentielle \(y''+a(x)y'+b(x)y=0\). On note \(\mathscr{Z}_\varphi=\{x\in I,\ \varphi(x)=0\}\). Montrer que \(\mathscr{Z}_\varphi\cap J\) est fini pour tout segment \(J\) inclus dans \(I\).
[planches/ex0988]
[planches/ex4988] mines MP 2019 Soit \(q\) une fonction continue de \([0,1]\) dans \(\mathbf{R}\), \(y\) une fonction de classe \(\mathscr{C}^2\) de \([0,1]\) dans \(\mathbf{R}\), non identiquement nulle, telle que \(y''+qy=0\). Montrer que l’ensemble des zéros de \(y\) est fini.
[planches/ex4988]
Vous pouvez paramétrer ce qui s'affiche lorsque vous survolez un énoncé, voire ne rien afficher