[oraux/ex3147] polytechnique, espci PC 2011 Soit \(y\) une solution de \(y''(x)=xy(x)\) sur \([0,1]\) telle que \(y(0)=1\) et \(y'(0)=0\). Montrer : \(\forall x\in[0,1]\), \(|y'(x)|+|y(x)|\leqslant e^x\).
[oraux/ex3147]
[planches/ex0929] polytechnique MP 2013 Soit \(q\in\mathscr{C}^0(\mathbf{R},\mathbf{R})\) intégrable. Étudier les solutions bornées de \(y''-(1+q)y=0\).
[planches/ex0929]
[planches/ex1056] mines MP 2015 Soient \(q\in\mathscr{C}^0(\mathbf{R},\mathbf{R}_+)\) et \(x\) une solution strictement positive de \(x''+q(t)x=0\). On pose \(f=x'/x\).
[planches/ex1056]
Donner une équation différentielle satisfaite par \(f\).
Montrer que \(f\) est décroissante positive.
Que peut-on dire de l’intégrabilité de \(q\) ?
[planches/ex1597] ens PSI 2017 Si \(x\) est un nombre réel, on note \(\{x\}=x-\lfloor x\rfloor\) la partie fractionnaire de \(x\). Soient \(\theta\in\mathbf{R}\setminus\mathbf{Q}\) et \(f:\mathbf{N}\rightarrow\left[0,1\right[\), \(n\mapsto\{n\theta\}\).
[planches/ex1597]
Montrer que \(f\) est injective.
Montrer que : \(\forall\varepsilon>0\), \(\exists(m,n)\in\mathbf{N}^2\), \(m\neq n\) et \(0<f(m)-f(n)<\varepsilon\).
En déduire que \(\{x\in\mathbf{R},\ \exists(a,b)\in\mathbf{Z}^2,\ x=a+b\theta\}\) est dense dans \(\mathbf{R}\).
On considère l’équation différentielle \((E)\) : \(y''+2y'+2y=f\) où \(f\in\mathscr{C}^0(\mathbf{R},\mathbf{R})\) est non constante. On suppose que \((E)\) possède deux solutions périodiques \(y_1\) et \(y_2\) de périodes respectives \(T_1\) et \(T_2\). On se propose de montrer que \(y_1=y_2\).
Montrer que \(T_1/T_2\) est un nombre rationnel.
Montrer que la fonction \(y_2-y_1\) est bornée.
Montrer que \(y_2=y_1\).
[oraux/ex4963] ens PC 2012 Soient \((E)\) : \(y''+(1+e^{-t}) y=0\) et \((F)\) : \(y''+y=0\). Soient \(f\) une solution non nulle de \((E)\) et \(g\) une solution non nulle de \((F)\).
[oraux/ex4963]
Montrer qu’entre deux zéros de \(g\) il y a au moins un zéro de \(f\).
Montrer que \(f\) possède une infinité de zéros sur \(\mathbf{R}^+\). On note \((x_n)_{n\geqslant 0}\) la suite ordonnée des zéros de \(f\) sur \(\mathbf{R}^+\).
Montrer que \(x_{n+1}-x_n\rightarrow \pi\).
Donner un équivalent de \(x_n\) quand \(n\rightarrow +\infty\).
[planches/ex1596] ens PSI 2017 Soit \(f\in\mathscr{C}([0,1],\mathbf{R})\) et \(c\in\mathscr{C}([0,1],\mathbf{R}_+)\). On considère le problème aux limites : \[(1)\qquad-u''(x)+c(x)u(x)=f(x),\quad u(0)=u(1).\]
[planches/ex1596]
Pour \(\lambda\in\mathbf{R}\), on considère le système : \[(2)\qquad-u_\lambda(x)+c(x)u_\lambda(x)=f(x),\quad u_\lambda(0)=0,\quad u_\lambda(0)=\lambda.\] Montrer que \((2)\) possède une unique solution \(u_\lambda\) dans \(\mathscr{C}^2([0,1],\mathbf{R})\).
En déduire qu’il existe une unique solution de \((1)\) dans \(\mathscr{C}^2([0,1],\mathbf{R})\).
Indication : On pourra montrer que \(\varphi:\lambda\mapsto u_\lambda(1)\) est affine.
Montrer que si \(f\geqslant 0\), alors \(u\geqslant 0\).
[oraux/ex2784] mines 2003 Soit \(\lambda>0\). On considère l’équation différentielle : \[(E)\qquad y''=-y+\lambda y'(1-y^2).\] On note \(\varphi:I\rightarrow\mathbf{R}\) une solution maximale de \((E)\). On pose \(g=\varphi^2+(\varphi')^2\).
[oraux/ex2784]
Montrer que \(g'\leqslant 2\lambda g\).
Soit \(a\in I\).
Soit \(x\in\left[a,+\infty\right[\cap I\). Montrer que \(g(x)\leqslant g(a)e^{2\lambda(x-a)}\).
Montrer que \(I\supset\left[a,+\infty\right[\).
[oraux/ex2894] centrale MP 2005 Soit \(q\) une fonction continue et positive définie sur \(\mathbf{R}\). On note \((E)\) l’équation différentielle : \(y''-qy=0\).
[oraux/ex2894]
Montrer qu’une solution non nulle de \((E)\) ne s’annule qu’au plus une fois.
Désormais \(q(t)=e^t\). Montrer que les solutions de \((E)\) sont développables en série entière.
Donner l’allure des solutions \(f\) et \(g\) de \(y''-e^ty=0\) vérifiant les conditions initiales \(f(0)=1\), \(f'(0)=0\), \(g(0)=0\) et \(g'(0)=1\).
[oraux/ex3170] centrale MP 2011 (avec Maple)
[oraux/ex3170]
Maple
Soit \((E_\lambda)\) l’équation \(-y''+x^2y=\lambda y\).
Tracer les solutions pour \(\lambda\in\{1,2\}\) pour chacune des conditions initiales suivantes : \(\{y(0)=0,\ y'(0)=1\}\) et \(\{y(0)=1,\ y'(0)=0\}\).
On étude \((E_1)\). Chercher les valeurs de \(\sigma\) telles que \(t\mapsto e^{at^2}\) soit solution. En déduire toutes les solutions de \((E_1)\) à l’aide de \(\varphi:x\mapsto\displaystyle\int_0^xe^{t^2}\,dt\). Chercher avec Maple un équivalent de \(\varphi\) en \(+\infty\). Quelles sont les solutions bornées de \((E_1)\) ?
Soit \(y\) une solution de \((E_\lambda)\). Déterminer une équation vérifiée par \(u:x\mapsto y(x)e^{x^2/2}\). Montrer que ces fonctions \(u\) sont développables en série entière, et qu’il en est de même de toutes les solutions de \((E_\lambda)\).
[planches/ex0957] centrale MP 2013 Soient \(q\in\mathscr{C}^0(\left[a,+\infty\right[,\mathbf{R}_+)\) et \((E)\) l’équation différentielle \(y''=q(x)y\).
[planches/ex0957]
Soit \(f\) une solution de \((E)\) telle que \(f(a)>0\) et \(f'(a)>0\). Montrer que \(f\) et \(f'\) sont strictement positives et que \(f\) tend vers \(+\infty\) en \(+\infty\).
Soient \(u\) et \(v\) les solutions de \((E)\) telles que \(u(a)=1\), \(u'(a)=0\), \(v(a)=0\), \(v'(a)=1\). Calculer \(u'v-uv'\). Montrer que, sur \(\left]a,+\infty\right[\), \(u/v\) et \(u'/v'\) sont monotones de monotonies opposées. Montrer que \(u/v\) et \(u'/v'\) tendent en \(+\infty\) vers la même limite réelle.
Montrer qu’il existe une unique solution \(g\) de \((E)\), strictement positive, telle que \(g(a)=1\) et telle que \(g\) décroisse sur \(\left[a,+\infty\right[\).
Déterminer \(g\) lorsque \(q(x)=\displaystyle{1\over x^4}\) sur \(\left[1,+\infty\right[\). On pourra poser \(y(x)=xz(1/x)\).
[planches/ex0917] ens paris, ens lyon, ens cachan MP 2013 Soient \(\eta\) et \(\varphi\) deux fonctions de classe \(\mathscr{C}^\infty\) et 1-périodiques de \(\mathbf{R}\) dans \(\mathbf{R}\), avec \(\eta\) à valeurs dans \(\mathbf{R}_+^*\) et \((E)\) l’équation différentielle : \(y''-\eta y=\varphi\).
[planches/ex0917]
Montrer que \((E)\) admet au plus une solution 1-périodique.
On suppose \(\eta\) constante. Montrer que \((E)\) possède une solution 1-périodique.
Établir l’existence de \(\alpha>0\) tel que, pour \(\lambda\in\mathbf{R}\) vérifiant \(0<|\lambda|<\alpha\), l’équation \(u''-\lambda\eta u=\varphi\) admette une solution 1-périodique.
Indication : On écrit \(\varphi=\lambda\varphi_1+\varphi_0\) avec \(\varphi_1\) constante et \(\displaystyle\int_0^1\varphi_0=0\). On cherche alors la solution \(u\) sous la forme \(\displaystyle\sum\limits_{n=0}^{+\infty}\lambda^n(u_n+c_n)\) où \(c_n\) est constante de \(u_n\) est une fonction 1-périodique vérifiant \(u_n(0)=0\).
[planches/ex9268] ens saclay, ens rennes MP 2023 On considère l’équation différentielle \((D_{\lambda})\) : \(y'' + (\lambda-r)y =0\) avec \(\lambda \in \mathbb{R}\), \(r \in\mathscr{C}^{\infty}(I, \mathbb{R})\), où \(I\) est un intervalle contenant \([0, 1]\).
[planches/ex9268]
On considère \(E_{\lambda}\) l’espaces des solutions \(y\) de \((D_{\lambda})\) telles que \(y(0) = 0\), \(y(1) = 0\).
Quelles sont les dimensions possibles de \(E_{\lambda}\) ?
Caractériser le cas \(\mathop{\mathchoice{\hbox{dim}}{\hbox{dim}}{\mathrm{dim}}{\mathrm{dim}}}\nolimits(E_{\lambda}) = 1\). (On souhaite une condition portant sur \(y_{\lambda}\), solution du problème de Cauchy \((D_{\lambda})\), \(y_{\lambda}(0) = 0\), \(y_{\lambda}'(0) = 1\).)
Montrer que, à \(r\) fixé, les \(E_{\lambda}\) sont orthogonaux pour le produit scalaire \(\langle f, g \rangle = \displaystyle\int_{0}^{1} fg\).
On note \(N_\lambda\) le nombre de zéros de \(y_{\lambda}\) sur \([0, 1]\). Pourquoi est-il fini ?
Calculer \(N_{\lambda}\) dans le cas \(r = 0\), \(\lambda > 0\).
Dans le cas général, étudier le comportement de \(N_{\lambda}\).
[oraux/ex4961] ens PC 2012 Soient \(a,b,c,d\) dans \({\cal C}^2(\mathbf{R}^+,\mathbf{R})\). On suppose : \(a>0\), \(c<0\) et \(d>0\). Soit \((E)\) l’équation différentielle : \(ay''+by'+cy=d\), \(y(0)=0\).
[oraux/ex4961]
Si \(y'(0)=0\), montrer que : \(\forall t\in\mathbf{R}^{+*}\), \(y(t)>0\).
On suppose qu’il existe \(t_1>0\) tel que \(y(t_1)>0\). Montrer : \(\forall t\geqslant t_1\), \(y(t)\geqslant 0\).
[oraux/ex3113] centrale PSI 2010 Soit \(u\in\mathscr{C}^2([0,1],\mathbf{R})\) telle que : \(u''(x)+e^xu'(x)=-1\), \(u(0)=u(1)=0\).
[oraux/ex3113]
Montrer que \(u\) n’admet pas de minimum local sur \(\left]0,1\right[\).
Montrer que \(u'(0)>0\) et \(u'(1)<0\).
Montrer que \(u\) existe et est unique. Exprimer \(u\) à l’aide d’intégrales.
[planches/ex0923] ens PC 2013 Soient \(\varphi\in\mathscr{C}^\infty(\mathbf{R},\mathbf{R})\) et \(\alpha\in\mathbf{R}\). Résoudre \[(E)\ :\quad(\varphi(x)-\alpha)u''(x)-\varphi''(x)u(x)=0\] lorsque \(\varphi=\alpha\) possède zéro ou une solution.
[planches/ex0923]
Indication : Déterminer une solution simple de \((E)\).
[planches/ex0996] polytechnique MP 2014 Soit \(q:\mathbf{R}_+\rightarrow\mathbf{R}\) une fonction continue telle que \(t\mapsto tq(t)\) soit intégrable sur \(\mathbf{R}_+\). Soit \(y:\mathbf{R}_+\rightarrow\mathbf{R}\) une fonction deux fois dérivable telle que \(y''+qy=0\). Montrer successivement :
[planches/ex0996]
que \(t\mapsto\displaystyle{y(t)\over t}\) est bornée au voisinage de \(+\infty\) ;
que \(y'\) a une limite finie en \(+\infty\) ;
que \(t\mapsto\displaystyle{y(t)\over t}\) a une limite finie en \(+\infty\).
[oraux/ex2986] centrale MP 2008 Soit \(q:\mathbf{R}\rightarrow\mathbf{R}\) continue, \(2\pi\)-périodique, de valeur moyenne nulle. Pour \(n\in\mathbf{N}^*\), soit \(y_n:\mathbf{R}\rightarrow\mathbf{R}\) la solution du problème de Cauchy : \(y''+(1-q(nt))y=0\), \(y(0)=1\) et \(y'(0)=0\). Soit \(X_n:t\mapsto(y_n(t),y_n'(t))\). On munit \(\mathbf{R}^2\) de son produit scalaire canonique.
[oraux/ex2986]
Montrer que, \(\forall t\in\mathbf{R}\) : \(\langle X_n(t),X_n'(t)\rangle\leqslant\displaystyle{1\over2}|q_n(t)|\times\|X_n(t)\|^2\).
Soit \(T>0\). Montrer que \(y_n\) et \(y_n'\) sont bornées sur \([0,T]\) par une constante indépendante de \(n\).
Montrer que \((y_n)\) converge uniformément sur \([0,T]\).
[planches/ex2136] mines MP 2017 Soient \(a\) et \(b\) continues et 1-périodiques, et soit \(y\) solution de \(y''+ay'+by=0\) telle que \(y(0)=y(1)=0\). Montrer que \(y\) s’annule en tout \(k\in\mathbf{Z}\).
[planches/ex2136]
[oraux/ex3129] ens lyon MP 2011 Soient \(f\) et \(g\) deux fonctions de classe \(C^2\) de \(\mathbf{R}\) dans \(\mathbf{R}\) telle que \((f,g)\) soit libre. Donner une condition nécessaire et suffisante pour qu’existent deux fonctions \(a\) et \(b\) continues et 1-périodiques de \(\mathbf{R}\) dans \(\mathbf{R}\) telles que : \(f''+af'+bf=0\) et \(g''+ag'+bg=0\).
[oraux/ex3129]
[concours/ex2392] mines M 1995 Soit \(f:\mathbf{R}_+\rightarrow\mathbf{R}\) une fonction continue telle que \(\displaystyle\int_0^{+\infty}f^2(t)\,dt\) converge. Montrer que toute solution de \(x''(t)+(1+f(t))x(t)=0\) est bornée.
[concours/ex2392]
Le clic droit sur un énoncé ou sur une référence d'exercice permet d'examiner cet exercice sur une page dédiée