[examen/ex1383] polytechnique MP 2024 Pour \(f\in\mathscr{C}^\infty(\mathbf{R},\mathbf{R})\), on pose \(H(f):x\mapsto x^2f(x)-f''(x)\), \(A_-(f):x\mapsto -f'(x)+xf(x)\) et \(A_+(f):x\mapsto f'(x)+xf(x)\).
[examen/ex1383]
Déterminer \(A_-\circ A_+\) et \(A_+\circ A_-\).
Montrer qu’il existe une unique \(\varphi_0\in\mathscr{C}^\infty(\mathbf{R},\mathbf{R})\) de carré intégrable, telle que \(H(\varphi_0)=\varphi_0\) et \(\varphi_0(0)=1\).
On pose, pour \(n\in\mathbf{N}^*\), \(\varphi_n=A_-^n(\varphi_0)\).
Montrer que, pour tout \(n\in\mathbf{N}\), \(H(\varphi_n)=(2n+1)\varphi_n\).
Montrer que \(\varphi_n\) s’écrit sous la forme \(P_n\times\varphi_0\) avec \(P_n\) polynomiale.
[planches/ex2136] mines MP 2017 Soient \(a\) et \(b\) continues et 1-périodiques, et soit \(y\) solution de \(y''+ay'+by=0\) telle que \(y(0)=y(1)=0\). Montrer que \(y\) s’annule en tout \(k\in\mathbf{Z}\).
[planches/ex2136]
[concours/ex3550] polytechnique M 1992 Soit \(a\) et \(b\) deux fonctions continues de \(\mathbf{R}_+\) dans \(\mathbf{R}\). On suppose que les intégrales \(\displaystyle\int_0^{+\infty}ta(t)\,dt\) et \(\displaystyle\int_0^{+\infty}b(t)\,dt\) convergent absolument. On considère l’équation \((E)\) : \(x''+a(t)x=b(t)\). Soit \(x\) une solution de \((E)\). Montrer que \(x\) a une limite en \(+\infty\).
[concours/ex3550]
[oraux/ex2974] mines PSI 2008 Soient \(p\in\mathscr{C}^0(\mathbf{R},\mathbf{R}_-^*)\) et \((E)\) : \(y''+py=0\). Soit \(f\) une solution de \((E)\).
[oraux/ex2974]
On suppose : \(\forall x\in\mathbf{R}\), \(f(x)>0\). Montrer que \(f\) est non bornée.
On suppose qu’il existe un unique \(a\in\mathbf{R}\) tel que \(f(a)=0\). Montrer que \(f\) est non bornée.
On suppose que \(f\) est bornée. Montrer que \(f\) est identiquement nulle.
[oraux/ex3002] ens paris MP 2009 Soit \(E\) l’ensemble des fonctions complexes de classe \(C^\infty\) sur \(\mathbf{R}^2\), \(2\pi\)-périodiques par rapport à la première variable. On se donne une fonction complexe \(f_0\) de classe \(C^\infty\) sur \(\mathbf{R}\) et \(2\pi\)-périodique.
[oraux/ex3002]
Trouver \(f\in E\) telle que : \(\displaystyle{\partial f\over\partial t}(x,t)=-i\displaystyle{\partial^2f\over\partial x^2}(x,t)\) et \(\forall x\in\mathbf{R}\), \(f(x,0)=f_0(x)\).
Expliciter une constante \(C\) telle que : \[\int_0^{2\pi}\!\!\int_0^{2\pi}|f(x,t)|^4\,dx\,dt\leqslant C\left(\int_0^{2\pi}|f_0(x)|^2\,dx\right)^{\!2}.\]
[planches/ex2502] centrale MP 2017 Soit \(q:\mathbf{R}_+\rightarrow\mathbf{R}_+^*\). On considère l’équation différentielle \((\mathscr{E})\) : \(y''(x)=q(x)y(x)\).
[planches/ex2502]
Pour tout \(\alpha\in\mathbf{R}\), on note \(y_\alpha\) l’unique solution de \((\mathscr{E})\) vérifiant \(y_\alpha(0)=1\) et \(y_\alpha'(0)=\alpha\).
Montrer que \(\forall x\in\left]0,+\infty\right[\), \(y_0(x)y_0'(x)>0\). Montrer que \(y_0\) est strictement croissante.
Montrer que \(\forall\alpha\in\mathbf{R}\), \(\forall x\in\left]0,+\infty\right[\), \(y_\alpha(x)=y_0(x)\left(\displaystyle\int_0^x{\alpha\over y_0^2(t)}\,dt\right)\).
Montrer qu’il existe \(\alpha_1<0\) tel que l’on ait, pour \(\alpha\in\mathbf{R}\), l’équivalence entre « \(y_\alpha\) s’annule sur \(\mathbf{R}_+\) » et « \(\alpha<\alpha_1\) ». Calculer \(\alpha_1\).
[equadiff/ex0156] On considère l’équation différentielle linéaire du second ordre : \[(E)\qquad a(x)y''+b(x)y'+c(x)y=f(x),\] où \(a\), \(b\), \(c\) et \(f\) sont continues sur le même domaine de \(\mathbf{R}\), \(a\) ne s’annulant pas sur ce domaine. Soit \(y_1\) une solution particulière de l’équation homogène associée \((E')\). On effectue le changement de fonction inconnue \(y=y_1z\). Reporter cette égalité dans \((E)\) et démontrer que l’on obtient une équation du premier ordre par rapport à \(z'\). En déduire une méthode d’intégration de \((E)\).
[equadiff/ex0156]
Application : intégrer sur \(\mathscr{D}=\mathbf{R}_+^*\) l’équation : \[x^3y''+xy'-y=-e^{1/x},\] en remarquant que \(y_1:x\mapsto x\) est solution de l’équation homogène associée.
[oraux/ex4963] ens PC 2012 Soient \((E)\) : \(y''+(1+e^{-t}) y=0\) et \((F)\) : \(y''+y=0\). Soient \(f\) une solution non nulle de \((E)\) et \(g\) une solution non nulle de \((F)\).
[oraux/ex4963]
Montrer qu’entre deux zéros de \(g\) il y a au moins un zéro de \(f\).
Montrer que \(f\) possède une infinité de zéros sur \(\mathbf{R}^+\). On note \((x_n)_{n\geqslant 0}\) la suite ordonnée des zéros de \(f\) sur \(\mathbf{R}^+\).
Montrer que \(x_{n+1}-x_n\rightarrow \pi\).
Donner un équivalent de \(x_n\) quand \(n\rightarrow +\infty\).
[planches/ex1005] polytechnique, espci PC 2014 Soit \(f\in\mathscr{C}^2(\mathbf{R},\mathbf{R})\), \(g\in\mathscr{C}^1(\mathbf{R},\mathbf{R}_+)\) telles que : \(\forall x\in\mathbf{R}\), \(f''(x)+f(x)=-xg(x)f'(x)\). Montrer que \(f\) est bornée.
[planches/ex1005]
[examen/ex1382] polytechnique MP 2024
[examen/ex1382]
Soit \(f\in \mathscr{C}^1([0,\pi], \mathbf{R})\) telle que \(f(0)=f(\pi)=0\). Montrer que \(\displaystyle\int_0^{\pi}f^2\leqslant\frac{\pi^2}{8}\int_0^{\pi}(f')^2\).
Soit \(f\), \(q\in \mathscr{C}^0([0,\pi], \mathbf{R})\) telle que \(\forall x\in[0,\pi]\), \(q(x)<\displaystyle\frac{8}{\pi^2}\). Soient \(a\), \(b\in \mathbf{R}\). Montrer qu’il existe une unique fonction \(y\in \mathscr{C}^2([0,\pi], \mathbf{R})\) telle que \(y''+qy=f\), \(y(0)=a\), \(y(\pi)=b\).
[planches/ex1080] ens cachan, ens rennes MP 2016 Soient \(f\) dans \(\mathscr{C}^0([0,1],\mathbf{R}_-^*)\) et \((E)\) l’équation différentielle \(x''+f(t)x=0\) sur \([0,1]\).
[planches/ex1080]
Décrire la structure de l’ensemble des solutions de \((E)\), rappeler le théorème de Cauchy linéaire, mettre le système différentiel associé à \((E)\) sous forme matricielle.
Montrer que si \(x\) est solution de \((E)\) et vérifie \(x(0)=x(1)=0\) alors \(x=0\).
Montrer qu’il existe \(\varepsilon>0\) tel que pour toute solution de \((E)\), on ait : \[\varepsilon^2\int_0^1x(t)^2\,dt\leqslant\varepsilon\int_0^1x'(t)^2\,dt\leqslant\int_0^1(1-t)x(t)^2\,dt.\]
[oraux/ex3140] polytechnique MP 2011 Soient \(q\in\mathscr{C}^0(\mathbf{R},\mathbf{R}_-^*)\), \((E)\) l’équation différentielle \(y''+q(t)y=0\) et \((\varphi,\psi)\) le couple formé des solutions de \((E)\) sur \(\mathbf{R}\) vérifiant \((\varphi(0)=1,\ \varphi'(0)=0)\) et \((\psi(0)=0,\ \psi'(0)=1)\). Montrer que : \(\forall x\in\mathbf{R}_+\), \(\varphi(x)\geqslant 1\) et \(\psi(x)\geqslant x\).
[oraux/ex3140]
[planches/ex0989] ens paris, ens lyon, ens cachan, ens rennes MP 2014 Soient \(a>0\) et \(f\in\mathscr{C}^1(\left[1,+\infty\right[,\mathbf{R}_+^*)\) telle que \(\mathop{\mathchoice{\hbox{lim}}{\hbox{lim}}{\mathrm{lim}}{\mathrm{lim}}}\limits_{+\infty}f'=a\). On considère \(u\in\mathscr{C}^2(\left[1,+\infty\right[,\mathbf{R})\) bornée et solution de l’équation différentielle \((E)\) : \(y''-\displaystyle{f'\over f}y'-{y\over f^2}=0\).
[planches/ex0989]
Montrer que \(u'(x)=O(1/x)\) quand \(x\rightarrow+\infty\).
Montrer que \(u(x)\rightarrow0\) quand \(x\rightarrow+\infty\).
[oraux/ex4962] ens PC 2012 Soit \(a\in{\cal C}^\infty(\mathbf{R},\mathbf{R})\). On suppose qu’il existe \((A,B)\in\mathbf{R}\) tels que : \(\forall x\in\mathbf{R}\), \(0<A\leqslant a(x)\leqslant B\).
[oraux/ex4962]
Soit \(\varphi\in{\cal C}^\infty(\mathbf{R},\mathbf{R})\) non nulle et telle que \(\varphi ''=a\varphi\). Que dire de l’ensemble des zéros de \(\varphi\) ?
Soit \(\varphi\in{\cal C}^\infty(\mathbf{R},\mathbf{R})\) non nulle et telle que \(\varphi ''=-a\varphi\). Que dire de l’ensemble des zéros de \(\varphi\) ?
[planches/ex7169] centrale MP 2021 Soit \(f\in\mathscr{C}^1(\left[1,+\infty\right[,\mathbf{R}_+^*)\) telle que \(\mathop{\mathchoice{\hbox{lim}}{\hbox{lim}}{\mathrm{lim}}{\mathrm{lim}}}\limits_{x\rightarrow+\infty}f'(x)=\alpha>0\).
[planches/ex7169]
Soit \(u\in\mathscr{C}^2(\left[1,+\infty\right[,\mathbf{R})\) bornée et solution de l’équation différentielle \(u''-\displaystyle{f'\over f}u'-{u\over f^2}=0\). On pose \(h=\displaystyle{u'\over f}\).
Montrer que \(u'(x)=O(1/x)\) lorsque \(x\rightarrow+\infty\).
Montrer que \(u^2\) admet une limite \(\ell\) en \(+\infty\).
Montrer que \(\ell=0\).
[planches/ex9268] ens saclay, ens rennes MP 2023 On considère l’équation différentielle \((D_{\lambda})\) : \(y'' + (\lambda-r)y =0\) avec \(\lambda \in \mathbb{R}\), \(r \in\mathscr{C}^{\infty}(I, \mathbb{R})\), où \(I\) est un intervalle contenant \([0, 1]\).
[planches/ex9268]
On considère \(E_{\lambda}\) l’espaces des solutions \(y\) de \((D_{\lambda})\) telles que \(y(0) = 0\), \(y(1) = 0\).
Quelles sont les dimensions possibles de \(E_{\lambda}\) ?
Caractériser le cas \(\mathop{\mathchoice{\hbox{dim}}{\hbox{dim}}{\mathrm{dim}}{\mathrm{dim}}}\nolimits(E_{\lambda}) = 1\). (On souhaite une condition portant sur \(y_{\lambda}\), solution du problème de Cauchy \((D_{\lambda})\), \(y_{\lambda}(0) = 0\), \(y_{\lambda}'(0) = 1\).)
Montrer que, à \(r\) fixé, les \(E_{\lambda}\) sont orthogonaux pour le produit scalaire \(\langle f, g \rangle = \displaystyle\int_{0}^{1} fg\).
On note \(N_\lambda\) le nombre de zéros de \(y_{\lambda}\) sur \([0, 1]\). Pourquoi est-il fini ?
Calculer \(N_{\lambda}\) dans le cas \(r = 0\), \(\lambda > 0\).
Dans le cas général, étudier le comportement de \(N_{\lambda}\).
[concours/ex4170] mines M 1990 Soit \(f\) une solution sur \(\mathbf{R}_+\) de : \[y''+e^{-t^2}y=\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits t.\] On suppose \(f\) bornée et \(\displaystyle\int_0^{+\infty}f^2\) convergente. Montrer que \(f'\) est bornée, puis que \(\mathop{\mathchoice{\hbox{lim}}{\hbox{lim}}{\mathrm{lim}}{\mathrm{lim}}}\limits_{t\rightarrow+\infty}f(t)=0\).
[concours/ex4170]
[concours/ex3343] centrale M 1993 On considère l’équation différentielle \((E)\) : \[y''+y'+p(x)y=0.\] Trouver \(p(x)\) pour que \((E)\) admette deux solutions \(y_1\), \(\mu y_2\) non identiquement nulles et telles que \(y_2=y_1^2\). Résoudre alors \((E)\).
[concours/ex3343]
[oraux/ex2784] mines 2003 Soit \(\lambda>0\). On considère l’équation différentielle : \[(E)\qquad y''=-y+\lambda y'(1-y^2).\] On note \(\varphi:I\rightarrow\mathbf{R}\) une solution maximale de \((E)\). On pose \(g=\varphi^2+(\varphi')^2\).
[oraux/ex2784]
Montrer que \(g'\leqslant 2\lambda g\).
Soit \(a\in I\).
Soit \(x\in\left[a,+\infty\right[\cap I\). Montrer que \(g(x)\leqslant g(a)e^{2\lambda(x-a)}\).
Montrer que \(I\supset\left[a,+\infty\right[\).
[planches/ex6154] ens lyon MP 2021 Soit \(k\in\mathbf{R}\). Soit \(y\in\mathscr{C}^2(\mathbf{R},\mathbf{R})\) vérifiant \(y''=(x^3+kx)y\), \(y(0)=1\) et \(y'(0)=0\). Montrer que l’ensemble des zéros de \(y\) est majoré et non minoré.
[planches/ex6154]
La plupart des textes affichés provoquent l'apparition de bulles d'aide au passage de la souris