[concours/ex5477] polytechnique MP 2007 Soient \(f\in\mathscr{C}^1(\left]0,+\infty\right[,\mathbf{R})\) et \(g\) une solution de \((E)\) : \(y''+fy=0\), non identiquement nulle.
[concours/ex5477]
Montrer que les zéros de \(g\) sont isolés. Dans la suite, \(x_1\) et \(x_2\) sont deux zéros consécutifs de \(g\) vérifiant \(x_1<x_2\).
Montrer, si \(x\in[x_1,x_2]\) : \[\hskip-1cm(x_2-x)\int_{x_1}^x(t-x_1)f(t)g(t)\,dt+ (x-x_1)\int_x^{x_2}(x_2-t)f(t)g(t)\,dt =(x_2-x_1)g(x).\]
En déduire une minoration de \(\displaystyle\int_{x_1}^{x_2}|f(t)|\,dt\).
[examen/ex0458] centrale MP 2023 Soient \(E=\mathscr{C}^\infty([0,\pi],\mathbf{R})\) et \(F=\{f\in E,\ f(0)=f(\pi)=0\}\). Soient \(\varphi,q\in E\), la fonction \(q\) étant positive. On note \(\alpha\) une primitive de \(\varphi\). On pose \(D(y)=y''+\varphi y'-qy\) et \(L(y)=-e^\alpha D(y)\) pour tout \(y\in E\), et \(\langle y,z\rangle=\displaystyle\int_0^{\pi}y(x)L(z)(x)\,\mathrm{d}x\) pour tous \(y\), \(z\in F\).
[examen/ex0458]
Rappeler le théorème de Cauchy-Lipschitz.
Montrer que \(\langle\ ,\ \rangle\) est un produit scalaire sur \(F\).
Soit \(h\in E\). Montrer qu’il existe une unique fonction \(f_0\in F\) telle que \(D(f_0)=h\).
[examen/ex1793] mines MP 2024 Soit \(f\) une fonction continue et bornée de \(\mathbf{R}\) dans \(\mathbf{R}\). Déterminer les fonctions \(y\) de \(\mathbf{R}\) dans \(\mathbf{R}\), de classe \(\mathscr{C}^2\) et bornées, telles que \(y''-y=f\).
[examen/ex1793]
[planches/ex0932] polytechnique MP 2013 Soient \(a\in\left]0,\pi\right[\) et \(x\) la solution maximale du problème de Cauchy : \(x''=-\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(x)\), \(x(0)=a\), \(x'(0)=0\). Montrer que \(x\) est définie sur \(\mathbf{R}\) et \(\forall t\in\mathbf{R}\), \(|x(t)|\leqslant a\).
[planches/ex0932]
[equadiff/ex0157] On considère l’équation différentielle linéaire du second ordre : \[(E)\qquad a(x)y''+b(x)y'+c(x)y=f(x),\] où \(a\), \(b\), \(c\) et \(f\) sont continues sur le même domaine de \(\mathbf{R}\), \(a\) ne s’annulant pas sur ce domaine. On en cherche une solution sous la forme d’un produit de deux fonctions \(u\) et \(v\), i. e. \(y=uv\).
[equadiff/ex0157]
Déduire de cette égalité que \(u\) vérifie une équation différentielle : \[a_2u''+b_2u'+c_2u=f(x),\] dont les coefficients dépendent de \(x\) et de la fonction \(v\).
On choisit alors \(v\) pour pour que cette équation ne contienne pas \(u'\). En déduire une méthode d’intégration de \((E)\).
Application : résoudre sur \(\mathbf{R}_+^*\) l’équation différentielle : \[xy''+2y'-xy=\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits x,\] en remarquant qu’on peut prendre \(v(x)=\displaystyle{1\over x}\).
[planches/ex1104] mines MP 2016 Soit \(q:\mathbf{R}_+\rightarrow\mathbf{R}\) de classe \(\mathscr{C}^1\) telle que \(\forall x\in\mathbf{R}_+\), \(q(x)>0\) et \(q'(x)>0\). Montrer que les solutions de \(y''+qy=0\) sont bornées sur \(\mathbf{R}_+\).
[planches/ex1104]
Indication : Multiplier par \(y'/q\).
[oraux/ex3142] polytechnique MP 2011 Soit \(a\) dans \(\left]0,\pi\right[\).
[oraux/ex3142]
Déterminer \(y\) de classe \(C^2\) de \(\mathbf{R}\) dans \(\mathbf{R}\) telle que : \(y(0)=a\), \(y'(0)=0\), \(y''=-y\).
Soit \(x\) la solution maximale du problème de Cauchy \(x''=-\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits x\), \(x(0)=a\), \(x'(0)=0\). Montrer que \(x\) est définie sur \(\mathbf{R}\) et bornée par \(a\) sur \(\mathbf{R}\).
Trouver \(C>0\) telle que : \(\forall t\in\mathbf{R}\), \(|x(t)-y(t)|\leqslant Ct^2\).
[planches/ex8133] mines MP 2022 Soit \(f:\mathbf{R}_+\longrightarrow\mathbf{R}_+\) continue. On se donne \(c\geqslant 0\), on pose \(F:x\longmapsto c+\displaystyle\int_0^xf(t)\,dt\) et on suppose que \(\forall x\in\mathbf{R}_+\), \(xf(x)\leqslant F(x)\).
[planches/ex8133]
Étudier les variations de \(x\longmapsto\displaystyle{F(x)\over x}\) sur \(\mathbf{R}_+^*\) et en déduire que \(f\) est bornée.
Soit \(g\) une solution sur \(\mathbf{R}_+\) de l’équation différentielle \(y''+xy=0\). En s’intéressant à \(g^2\), montrer que \(g\) est bornée.
[planches/ex1009] mines MP 2014 Soit \((E)\) l’équation différentielle \[y''+e^xy=0.\]
[planches/ex1009]
Montrer que les solutions de \((E)\) sont bornées sur \(\mathbf{R}_+\).
Les solutions de \((E)\) sont-elles toutes bornées sur \(\mathbf{R}\) ?
[planches/ex8462] mines PC 2022
[planches/ex8462]
Soit \(f\in\mathscr{C}^0(\mathbf{R}_+,\mathbf{R}_+)\). On suppose qu’il existe \(c\geqslant 0\) tel que, pour tout \(x\in\mathbf{R}_+\), \(xf(x)\leqslant c+\displaystyle\int_0^xf(t)\,dt\). Montrer que \(f\) est bornée.
Soit \(y\in\mathscr{C}^2(\mathbf{R}_+,\mathbf{R})\) solution de \(y''+xy=0\). Montrer que \(y\) est bornée.
[oraux/ex3082] polytechnique MP 2010 Soit \(f:\mathbf{R}\rightarrow\mathbf{R}\) une solution non identiquement nulle de l’équation différentielle \((E)\) : \(y''+e^ty=0\). Montrer que \(f\) admet une infinité dénombrable de zéros.
[oraux/ex3082]
[oraux/ex3133] ens lyon MP 2011 Soit \(\varphi\) une solution maximale non identiquement nulle de \(y''+e^xy=0\).
[oraux/ex3133]
Montrer que \(\varphi\) est définie sur \(\mathbf{R}\).
Montrer que l’on peut ranger l’ensemble des zéros de \(\varphi\) sur \(\mathbf{R}_+\) en une suite strictement croissante \((x_n)_{n\in\mathbf{N}}\).
Montrer que \(x_{n+1}-x_n\rightarrow0\) quand \(n\rightarrow+\infty\).
Donner un équivalent de \(x_n\) quand \(n\rightarrow+\infty\).
[planches/ex3377] polytechnique, espci PC 2018 Soit \(q\in\mathscr{C}^1(\mathbf{R}_+,\mathbf{R})\) telle que \(q>0\), \(q'>0\). Montrer que les solutions de l’équation différentielle \(y''+qy=0\) sont bornées sur \(\mathbf{R}_+\).
[planches/ex3377]
[concours/ex3679] mines M 1992 Montrer que toutes les solutions de \(y''+e^xy=0\) sont bornées sur \(\mathbf{R}_+\).
[concours/ex3679]
[equadiff/ex0881] Soit \((E)\) : \(y''+ay'+by=0\) une équation différentielle linéaire du deuxième ordre homogène à coefficients non forcément constants, de classe \(C^1\) sur l’intervalle \(I\).
[equadiff/ex0881]
Écrire l’équation \((E')\) transformé de \((E)\) en posant \(y=uz\).
Déterminer une équation différentielle simple que doit vérifier la fonction \(u\) de sorte de \((E')\) ne contienne plus de terme en \(z'\), et résoudre cette équation en \(u\).
Montrer que \((E')\) peut se mettre sous la forme : \(z''=cz\), et exprimer la fonction \(c\) en fonction de \(a\) et \(b\).
Déterminer \(u\) et \(c\) quand \(a\) et \(b\) sont constants.
[examen/ex1383] polytechnique MP 2024 Pour \(f\in\mathscr{C}^\infty(\mathbf{R},\mathbf{R})\), on pose \(H(f):x\mapsto x^2f(x)-f''(x)\), \(A_-(f):x\mapsto -f'(x)+xf(x)\) et \(A_+(f):x\mapsto f'(x)+xf(x)\).
[examen/ex1383]
Déterminer \(A_-\circ A_+\) et \(A_+\circ A_-\).
Montrer qu’il existe une unique \(\varphi_0\in\mathscr{C}^\infty(\mathbf{R},\mathbf{R})\) de carré intégrable, telle que \(H(\varphi_0)=\varphi_0\) et \(\varphi_0(0)=1\).
On pose, pour \(n\in\mathbf{N}^*\), \(\varphi_n=A_-^n(\varphi_0)\).
Montrer que, pour tout \(n\in\mathbf{N}\), \(H(\varphi_n)=(2n+1)\varphi_n\).
Montrer que \(\varphi_n\) s’écrit sous la forme \(P_n\times\varphi_0\) avec \(P_n\) polynomiale.
[planches/ex1100] mines MP 2016 Soient \(a\) et \(b\) deux fonctions continues de \(\mathbf{R}\) dans \(\mathbf{R}\). Que peut-on dire de la dimension de l’espace des solutions sur \(\mathbf{R}\) de l’équation différentielle \[xy''+a(x)y'+b(x)y=0\ ?\]
[planches/ex1100]
[examen/ex2795] ens paris, ens lyon, ens saclay, ens rennes MP 2025 On fixe un intervalle non trivial \(I\).
[examen/ex2795]
Soient \(a\) et \(b\) deux fonctions continues de \(I\) dans \(\mathbf{R}\). Soit \(f\) une solution non nulle sur \(I\) de \(y''+a y'+b y=0\). Montrer que les zéros de \(f\) sont isolés : pour tout zéro \(t_0\) de \(f\) il existe un \(\delta>0\) tel que \(f\) n’ait pas de zéro dans \(\left]t_0-\delta,t_0+\delta\right[\setminus\{t_0\}\).
Soient \(p_1\), \(p_2\) deux fonctions continues de \(I\) dans \(\mathbf{R}\) telles que \(\forall t\in I\), \(p_1(t)\geqslant p_2(t)\). Soient \(f\), \(g\in\mathscr{C}^2(I,\mathbf{R})\setminus\{0\}\) telles que \(f''+p_1f=0\) et \(g''+p_2g=0\). Soient \(t_1<t_2\) deux zéros de \(f\) entre lesquels \(f\) n’admet aucun autre zéro. Montrer qu’il existe un zéro de \(g\) dans \(\left[t_1,t_2\right[\), ainsi que dans \(\left]t_1,t_2\right]\).
Soient \(p\), \(q\) deux fonctions continues de \([0,1]\) dans \(\mathbf{R}\) telles que \(\forall t\in[0,1]\), \(q(t)>0\). Pour \(\lambda\in\mathbf{R}\), on note \(f_\lambda\) la solution sur \([0,1]\) de l’équation différentielle \(y''+(p(t)+\lambda q(t))y=0\) avec la condition initiale \(f_\lambda(0)=0\) et \(f'_\lambda(0)=1\). On note \(N_\lambda\) le nombre de zéros de \(f_\lambda\). Montrer que \(\lambda\mapsto N_\lambda\) est croissante et déterminer ses limites en \(-\infty\) et \(+\infty\).
On admet que \((x,\lambda)\in[0,1]\times\mathbf{R}\mapsto f_\lambda(x)\) est continue. Montrer que l’ensemble \(\{\lambda\in\mathbf{R},\ f_\lambda(1)=0\}\) est l’ensemble des termes d’une suite réelle strictement croissante.
Montrer que \((\lambda,x)\mapsto f_\lambda(x)\) est continue sur \(\mathbf{R}\times[0,1]\).
[concours/ex3119] polytechnique P 1993
[concours/ex3119]
Soit \(g\), \(k:[a,b]\rightarrow\mathbf{R}\) avec \(g\) continue et \(k\) de classe \(C^1\) ne s’annulant pas sur \([a,b]\) et \[(E)\quad(ky')'+gy=0.\]
Montrer que l’ensemble des zéros d’une solution non nulle de \((E)\) est fini.
Soit \(y_1\) et \(y_2\) deux solutions indépendantes de \((E)\). Montrer que si \(x_1\) et \(x_2>x_1\) sont deux zéros de \(y_1\), alors \(y_2\) s’annule sur \(\left]x_1,x_2\right[\).
Soit \(g_1\), \(g_2:[a,b]\rightarrow\mathbf{R}\) continues telles que \(g_1<g_2\), \[(E_j)\quad(ky')'+g_jy=0\quad(j=1,2)\] et \(u\) une solution non nulle de \(E_1\) s’annulant en \(x_1\) et \(x_2>x_1\). Montrer que toute solution de \((E_2)\) s’annule sur \(\left]x_1,x_2\right[\).
[planches/ex1636] ens PC 2017 Soit \(u\in\mathscr{C}^\infty(\mathbf{R},\mathbf{R})\) telle que \(u(0)=0\) et \(u(x)\rightarrow\ell\in\mathbf{R}\) quand \(x\rightarrow+\infty\). Soient \(c\in\mathbf{C}\setminus\mathbf{R}\) et \((*)\) l’équation différentielle \((u-c)y''=u''y\).
[planches/ex1636]
Déterminer la dimension de l’espace des solutions de \((*)\).
Donner une solution \(\varphi_1\) non nulle et bornée en \(+\infty\) de \((*)\).
Soit \(\varphi_2\) une solution de \((*)\) indépendante de \(\varphi_1\). Peut-on avoir \(\varphi_2\) bornée en \(+\infty\) ?
Que se passe-t-il si \(c\in\mathbf{R}\) ?
Le clic droit sur un énoncé ou sur une référence d'exercice permet d'examiner cet exercice sur une page dédiée