[concours/ex3297] ens cachan M 1993 Soit \(y\) une solution non nulle d’une équation différentielle linéaire à coefficients continus \((e)\) : \(y''+ay'+by=0\). Montrer que si \(y\) s’annule au moins deux fois, il existe \(\alpha\) et \(\beta\) tels que \(y\) s’annule en \(\alpha\) et en \(\beta\) mais ne s’annule pas sur \(\left]\alpha,\beta\right[\). Montrer que si \(z\) est une solution de \((E)\) indépendante de \(y\), \(z\) s’annule une fois et une seule entre \(\alpha\) et \(\beta\).
[concours/ex3297]
[planches/ex4013] centrale PC 2018 (avec Python)
[planches/ex4013]
Python
Soit \((E)\) : \(x''(t)+p(t)x'(t)+q(t)x(t)=0\).
On prend \(p(t)=\displaystyle{t\over1+t^2}\) et \(q(t)=\displaystyle{-1\over1+t^2}\). Ainsi \((E)\) devient \((1+t^2)x''+tx'-x=0\).
Représenter sur \([0,5]\) les solutions \((f,g)\) de \((E)\) vérifiant \((f(0),f'(0))=(1,0)\) et \((g(0),g'(0))=(0,1)\).
En déduire une solution évidente.
Montrer que \(g\) est développable en série entière au voisinage de 0.
On a \(g(t)=\displaystyle\sum\limits_{n=0}^{+\infty}c_nt^{2n}\). Trouver une relation de récurrence entre les \(c_n\) et en déduire \(g\).
Montrer que \((E)\) possède deux solutions inverses l’une de l’autre.
On suppose maintenant que \((E)\) admet deux solutions \(u\) et \(v\) avec \(v=1/u\). Exprimer \(p\) et \(q\) en fonction de \(u\). En déduire une relation entre \(p\) et \(q\).
[concours/ex2124] ccp, tpe, int, ivp MP 1999 Soient \(f\) et \(g\) solutions réelles non nulles de \(y''+a(x)y'+b(x)y=0\), \(a\) et \(b\) étant des fonctions réelles continues. Montrer qu’entre deux zéros de \(f\) il y a exactement un zéro de \(g\).
[concours/ex2124]
[oraux/ex2884] centrale MP 2005
[oraux/ex2884]
Soient \(a\), \(b\), \(c\) trois fonctions de classe \(\mathscr{C}^\infty\) sur un intervalle \(I\) de \(\mathbf{R}\). À quelle condition l’équation \(ay''+by'+cy=0\) admet-elle deux solutions \(y_1\) et \(y_1\) vérifiant \(y_1y_2=1\) ?
Soit \((E)\) l’équation différentielle : \((x-1)y''(x)+xy'(x)-4y(x)=0\). Montrer que la condition précédente est réalisée. Étudier les solutions de \((E)\) sur \(\mathbf{R}\).
[planches/ex1038] ens MP 2014 Soient \(k\in\mathbf{N}\) et l’équation différentielle \((1-t^2)x''-2tx'+k(k+1)x=0\).
[planches/ex1038]
Montrer que cette équation admet une solution \(x_k\) non nulle, sur \(\mathbf{R}\).
Montrer que toute solution de classe \(\mathscr{C}^2\) sur \([-1,1]\) est proportionnelle à \(x_k\).
[planches/ex1022] centrale MP 2014 Soient \(I\) un intervalle de \(\mathbf{R}\) non vide et non réduit à un point, \(p\), \(q:I\rightarrow\mathbf{R}\) continues et \((E)\) : \(y''+py'+qy=0\). On suppose \(q\neq0\). On étudie l’existence de deux solutions, notées \(y_1\) et \(y_2\) de \((E)\), inverses l’une de l’autre, c’est-à-dire que \(y_1y_2=1\).
[planches/ex1022]
Si \(p\) et \(q\) sont constantes, donner une condition suffisante d’existence.
On considère \((E_1)\) : \(y''+\displaystyle{y'\over x}-{y\over4x^2}=0\) sur \(\left]1,+\infty\right[\) et \((E_2)\) : \(y''-\displaystyle{y'\over x\mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits x}-y{(\mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits x)^2\over4}=0\) sur \(\mathbf{R}_+^*\). Trouver pour \((E_1)\) puis pour \((E_2)\) un couple de solutions inverses l’une de l’autre.
On revient à l’équation générale \((E)\) et on suppose qu’elle admet un couple de solutions inverses l’une de l’autre \((y_1,y_2)\). On note \(W\) le wronskien de \((y_1,y_2)\).
Montrer que \(y_1\) et \(y_2\) sont linéairement indépendantes. Qu’en déduit-on pour \(W\) ?
Exprimer \(W\) en fonction de \(y_1\).
Montrer que \(W'+pW=0\).
Donner une condition nécessaire et suffisante sur \((p,q)\) pour que \((E)\) possède un couple de solutions inverses l’une de l’autre.
[equadiff/ex0093] Soient \(a(t)\) et \(b(t)\) deux fonctions continues sur \(I\) et \[(E)\quad x''+a(t)x'+b(t)x=0\,.\] Montrer que, si \(u(t)\) est une solution non identiquement nulle de \((E)\), le nombre de zéros de \(u\) sur tout segment inclus dans \(I\) est fini.
[equadiff/ex0093]
Indication : on montrera que les zéros de \(u\) sont isolés.
[oraux/ex3149] polytechnique, espci PC 2011 Soient \(I\) un intervalle ouvert de \(\mathbf{R}\), \(a\) et \(b\) dans \(\mathscr{C}^0(I,\mathbf{R})\) et \((E)\) l’équation différentielle \(y''+ay'+by=0\).
[oraux/ex3149]
Soit \(f\) une solution non nulle de \((E)\). Montrer que les zéros de \((E)\) sont isolés.
Soient \(f\) et \(g\) deux solutions non nulles de \((E)\). On suppose que \(f\) et \(g\) ont un zéro commun. Montrer que \(f\) et \(g\) sont proportionnelles.
Soient \(f\) et \(g\) deux solutions linéairement indépendantes de \((E)\). Montrer qu’entre deux zéros consécutifs de \(f\) il y a exactement un zéro de \(g\).
[concours/ex2465] ens lyon M 1995 Soient \(f\) et \(g\) deux applications continues et bornées de \(\mathbf{R}\) dans \(\mathbf{R}\). On considère l’équation différentielle \((E)\) : \(x''+f(t)x'+g(t)x=0\) et les conditions initiales \((CI)\) : \(x(0)=\alpha\), \(x'(0)=\beta\).
[concours/ex2465]
Montrer qu’il existe une unique fonction \(u\) définie sur \(\mathbf{R}\) vérifiant \((E)\) et \((CI)\).
Montrer que l’espace \(\mathscr{S}\) des solutions de \((E)\) définies sur \(\mathbf{R}\) est de dimension \(2\).
Soient \(x_1\) et \(x_2\) dans \(\mathscr{S}\). On pose \(w(t)=x_1(t)x'_2(t)-x_2(t)x'_1(t)\). Montrer que \(w\) est la fonction nulle ou ne s’annule jamais.
Soit \((x_1,x_2)\) une base de \(\mathscr{S}\) \(t_1<t_2\) deux zéros consécutifs de \(x_1\). Montrer qu’il existe un unique zéro de \(x_2\) sur \(\left]t_1,t_2\right[\).
On suppose \(f=0\) et \(g\leqslant 0\). Montrer qu’un élément de \(\mathscr{S}\) s’annule au plus une fois.
[planches/ex3378] polytechnique, espci PC 2018 Soient \(a\) et \(b\) dans \(\mathscr{C}^0(\mathbf{R},\mathbf{R})\) et \((E)\) l’équation différentielle \(y''+ay'+by=0\). Montrer qu’il existe deux solutions \(f\), \(g\) de \(E\) vérifiant \(fg=1\) si et seulement si \(b\) est de classe \(\mathscr{C}^1\), \(b\leqslant 0\) et \(b'=-2ab\).
[planches/ex3378]
[planches/ex1053] polytechnique, espci PC 2015 Soient \(a\) et \(b\) dans \(\mathscr{C}^1(\mathbf{R},\mathbf{R})\) et \((E)\) l’équation différentielle \(y''+ay'+by=0\). Donner une condition nécessaire et suffisante sur \(a\) et \(b\) pour qu’il existe \(f\) et \(g\) solutions de \((E)\) telles que \(fg=1\).
[planches/ex1053]
[planches/ex0925] ens PC 2013 Soient \(f\in\mathscr{C}^0(\mathbf{R},\mathbf{R}_+)\) telle que \(f(x)\rightarrow\ell>0\) quand \(x\rightarrow+\infty\), et \((*)\) : \(y''+fy=0\). Soit \(y:\mathbf{R}\rightarrow\mathbf{R}\) solution de \((*)\) telle que \(y(0)=0\).
[planches/ex0925]
Que dire si \(y'(0)=0\) ?
On suppose \(y'(0)>0\). Montrer qu’il existe \(t>0\) tel que \(y'(t)=0\).
Montrer que \(y\) a une infinité de zéros sur \(\mathbf{R}_+\).
[concours/ex5307] ens paris MP 2007 Soient \(f:\mathbf{R}_+\rightarrow\mathbf{R}\) de classe \(C^2\) et \(g:\mathbf{R}_+\rightarrow\mathbf{R}_+^*\) strictement croissante telles que \(f''+gf=0\).
[concours/ex5307]
Montrer que l’ensemble des zéros de \(f\) n’est mas majoré.
Montrer que \(f\) est bornée au voisinage de \(+\infty\).
[concours/ex6044] centrale MP 2007 Soient \(m\in\mathbf{R}_+^*\) et \(q\in\mathscr{C}^0(\mathbf{R}_+,\mathbf{R})\) telle que : \(\forall t\in\mathbf{R}_+\), \(q(t)\geqslant m\). On note \((E)\) l’équation différentielle \(y''+qy=0\). Soit \(f\) une solution non nulle de \((E)\).
[concours/ex6044]
Montrer qu’il existe \(p\), \(g:\mathbf{R}_+\rightarrow\mathbf{R}\) de classe \(C^1\) avec \(p>0\) telles que \(f=p\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits g\) et \(f'=p\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits g\).
Exprimer \(g'\) en fonction de \(g\) et \(q\).
En déduire que \(g\) est un \(C^1\)-difféomorphisme de \(\mathbf{R}_+\) sur \(g(\mathbf{R}_+)\).
Montrer que \(f\) s’annule une infinité de fois.
[concours/ex4064] polytechnique P 1990 Conditions nécessaires et suffisantes sur les fonctions \(p\) et \(q\), supposées continues sur \(\mathbf{R}\), pour que l’équation différentielle \[x''+p(t)x'+q(t)x=0\] admette deux solutions, \(x_1\) et \(x_2\), telles que :
[concours/ex4064]
\(\forall t\in\mathbf{R}^*\quad x_1(t)\neq0\) ;
\(\forall t\in\mathbf{R}\quad x_2(t)=tx_1(t)\).
[oraux/ex3050] centrale MP 2009 Soient \(I\) un intervalle de \(\mathbf{R}\), \(a\in\mathscr{C}^1(I,\mathbf{R})\), \(b\in\mathscr{C}^0(I,\mathbf{R})\) et \((H)\) l’équation différentielle \(y''+ay'+by=0\).
[oraux/ex3050]
Donner une condition nécessaire et suffisante sur \(a\) et \(b\) pour qu’il existe deux solutions \(y_1\) et \(y_2\) de \((H)\) telles que \(x_2=xy_1\) et \(y_1\neq0\).
Déterminer alors toutes les solutions de \((H)\).
[planches/ex0963] centrale PSI 2013 Soient \(I\subset\mathbf{R}\) un intervalle, \(A\in\mathscr{C}^1(I,\mathbf{R})\), \(B\in\mathscr{C}^0(I,\mathbf{R})\). Trouver une condition nécessaire et suffisante pour que l’équation différentielle \(y''+Ay'+By=0\) admette deux solutions \(y_1\) et \(y_2\) telles que \(\forall x\in I\), \(y_2(x)=xy_1(x)\).
[planches/ex0963]
[planches/ex6387] ens lyon PC 2021 Pour \(\varphi_1\) et \(\varphi_2\in\mathscr{C}^2(\mathbf{R},\mathbf{R})\), on pose \(W=\left|\matrix{\varphi_1&\varphi'_1\cr\varphi_2&\varphi'_2}\right|\).
[planches/ex6387]
Soit \(q\) une fonction continue de \(\mathbf{R}\) dans \(\mathbf{R}\). Soient \(\varphi_1\) et \(\varphi_2\) deux solutions de l’équation différentielle \(y''+qy=0\). Que dire de la fonction \(W\) ?
Soient \(q_1\) et \(q_2\) deux fonctions continues de \(\mathbf{R}\) dans \(\mathbf{R}\). Soit \(\varphi_1\) une solution de \(y''+q_1y=0\) et \(\varphi_2\) une solution de \(y''+q_2y=0\). Calculer \(W'\).
Soit \(q\) une fonction continue de \(\mathbf{R}\) dans \(\mathbf{R}\). On suppose que \(q\) est minorée par un réel strictement positif \(\alpha\). Montrer que toute solution de l’équation différentielle \(y''+qy=0\) s’annule une infinité de fois.
[oraux/ex2949] ens paris MP 2008 Soit \(g\in\mathscr{C}^0(\mathbf{R}_+^*,\mathbf{R}_+^*)\). On suppose qu’il existe \(m>0\) tel que \(g\geqslant m\). Soit \(f:\mathbf{R}_+^*\rightarrow\mathbf{R}\) une solution non nulle de : \(y''+gy=0\).
[oraux/ex2949]
Montrer que \(f\) admet une infinité de zéros.
On suppose \(g\) croissante. Montrer que \(f\) est majorée au voisinage de \(+\infty\).
[concours/ex2908] centrale M 1994 Soient \(I\) un intervalle réel, \(p\) et \(q\) des applications continues définies sur \(I\) et à valeurs réelles. Soit \((E)\) l’équation différentielle : \(y''+py'+qy=0\). Trouver une condition portant sur les fonctions \(p\) et \(q\) pour que \((E)\) admette sur \(I\) deux solutions \(u\) et \(v\) non nulles telles que pour tout \(x\), on ait : \(v(x)=xu(x)\).
[concours/ex2908]
Application : résoudre, sur \(\left]0,+\infty\right[\), puis sur \(\left[0,+\infty\right[\), l’équation : \[x^2y''+x(1-2x)y'+\left(x^2-x-{1\over4}\right)y=x^{5/2}.\]
Dans la page dédiée à l'examen d'un exercice, vous pouvez choisir de quelle façon sont affichées les solutions