[oraux/ex2840] centrale 2004 Soient \(r\) et \(q\) deux fonctions continues sur \(I=[a,b]\), telles que \(\forall x\in I\), \(r(x)\geqslant q(x)\). On considère les équations différentielles : \[\begin{array}{lcc}y''+qy=0&&(E_1)\\z''+rz=0&&(E_2)\end{array}\]
[oraux/ex2840]
Soient \(x_0\) et \(x_1\) deux zéros consécutifs de \(y\), solution non nulle de \((E_1)\). Peut-on avoir \(y'(x_0)=0\) ou \(y'(x_1)=0\) ? Que dire des signes de \(y'(x_0)\) et \(y'(x_1)\) ?
Soit \(z\) une solution de \((E_2)\). On note \(w(x)=y(x)z'(x)-y'(x)z(x)\). Calculer \(w'(x)\) et exprimer \(w(x_1)-w(x_0)\).
Montrer que pour tout \(z\) solution de \((E_2)\), \(z\) s’annule entre \(x_0\) et \(x_1\).
Montrer que toute solution de \((E_1)\) est proportionnelle à \(y\) ou alors qu’elle s’annule entre \(x_0\) et \(x_1\).
Application : Soit \(y\) une solution de l’équation \(y''+e^{x^2}y=0\). La fonction \(y\) s’annule-t-elle ?
[concours/ex3081] polytechnique M 1993 Soit \(J\) l’intervalle \(\left]a,+\infty\right[\), \(q\) une application continue sur \(J\) à valeurs réelles. On suppose que : \[\int_a^{+\infty}\left|q(t)\right|\,dt\] converge. Montrer qu’il existe une solution, à valeurs complexes, de l’équation différentielle : \[x''+(1+q)x=0,\] telle que \(x(t)-e^{it}\) tende vers \(0\) lorsque \(t\) tend vers \(+\infty\).
[concours/ex3081]
[oraux/ex3074] ens lyon MP 2010 Soient \(p\) et \(q\) deux fonctions continues de \(\mathbf{R}\) dans \(\mathbf{R}\) telles que \(p\leqslant q\) et \(f\in\mathscr{C}^2(\mathbf{R},\mathbf{R})\) non identiquement nulle telle que \(f''+pf=0\).
[oraux/ex3074]
Montrer que les zéros de \(f\) sont isolés.
Soient \(x_1<x_2\) deux zéros consécutifs de \(f\) et \(g\in\mathscr{C}^2(\mathbf{R},\mathbf{R})\) telle que \(g''+qg=0\). Montrer que \(g\) s’annule sur \([x_1,x_2]\).
[concours/ex2909] centrale M 1994 Soient \(p\) et \(q\) deux applications continues sur un intervalle \(I\), à valeurs réelles, et telles que \(q>p\). Soient \(x_1\) et \(x_2\) des applications non identiquement nulles sur \(I\) vérifiant respectivement \(x_1''+px_1=0\) et \(x_2''+qx_2=0\).
[concours/ex2909]
Montrer qu’entre deux zéros consécutifs de \(x_1\), il existe un unique zéro de \(x_2\).
[concours/ex6515] polytechnique PC 2006 Soient \(f_1\) et \(f_2\) deux fonctions continues sur \(\mathbf{R}\) telles que \(f_2>f_1\), \((E_1)\) : \(y''+f_1y=0\), et \((E_2)\) : \(y''+f_2y=0\), \(y_1\) (resp. \(y_2\)) une solution non nulle de \((E_1)\) (resp. de \((E_2)\)), \(\alpha\) et \(\beta\) deux zéros consécutifs de \(y_1\). Montrer que \(y_2\) s’annule sur \([\alpha,\beta]\).
[concours/ex6515]
[planches/ex1109] centrale MP 2016
[planches/ex1109]
Soient \(q_1\) et \(q_2\) deux fonctions continues de \(\mathbf{R}\) dans \(\mathbf{R}\) telles que \(q_2\geqslant q_1\), \(u\) (resp. \(v\)) une solution non identiquement nulle de \(y_1''+q_1y=0\) (resp. \(y''+q_2y=0\)), \(a\) et \(b\) deux zéros consécutifs de \(u\). Montrer que soit \(v/u\) est constante sur \(\left]a,b\right[\), soit \(v\) s’annule sur \(\left]a,b\right[\).
Soit \(q\) une fonction continue de \(\mathbf{R}\) dans \(\mathbf{R}_-\). Que dire de l’ensemble des zéros d’une solution de \(y''+qy=0\) ?
Soient \(c\) et \(d\) deux éléments de \(\mathbf{R}_+^*\) tels que \(c<d\), \(q\) une fonction continue de \(\mathbf{R}\) dans \([c^2,d^2]\). Que dire de l’ensemble des zéros d’une solution de \(y''+qy=0\) ?
[oraux/ex3041] mines PC 2009 Soient \(q\in\mathscr{C}^0(\mathbf{R},\mathbf{R})\) et \((E)\) : \(y''+qy=0\). Soient \(u\) et \(v\) deux solutions linéairement indépendantes de \((E)\).
[oraux/ex3041]
Montrer que les zéros de \(v\) sont isolés.
Montrer qu’entre deux zéros consécutifs de \(v\), \(u\) s’annule exactement une fois.
[oraux/ex3119] centrale PC 2010 Soient \(I\) un intervalle ouvert non vide de \(\mathbf{R}\), \(a\in\mathscr{C}^0(I,\mathbf{R}_+)\) et \(b\in\mathscr{C}^0(I,\mathbf{R})\). Soient \((E_1)\) : \(y''-a(x)y=0\) et \((E_2)\) : \(y''-a(x)y=b(x)\).
[oraux/ex3119]
Soit \(y\) une solution de \((E_1)\). On suppose qu’il existe \((x_1,x_2)\in I^2\) avec \(x_1<x_2\) tel que \(y(x_1)=y(x_2)=0\). Calculer \(\displaystyle\int_{x_1}^{x_2}y(x)^2a(x)\,dx\). Que dire de \(y\) ?
Soient \((x_1,x_2)\in I^2\) avec \(x_1<x_2\).
Montrer qu’il existe une unique solution \(y_1\) de \((E_2)\) telle que \(y_1(x_1)=0\) et \(y_1'(x_1)=1\).
Montrer qu’il existe une unique solution \(y_2\) de \((E_2)\) telle que \(y_2(x_1)=y_2(x_2)=0\).
[planches/ex2137] mines MP 2017 Soient \(q\) une fonction continue de \([0,1]\) dans \(\mathbf{R}_+\), \(f\) une fonction continue de \([0,1]\) dans \(\mathbf{R}\), \((a,b)\in\mathbf{R}^2\). Montrer qu’il existe une unique fonction \(y\) de \([0,1]\) dans \(\mathbf{R}\) de classe \(\mathscr{C}^2\) telle que \(y''-qy=f\) et \((y(0),y(1))=(a,b)\).
[planches/ex2137]
[planches/ex1057] mines MP 2015 Soient \((a,b)\in\mathbf{R}^2\) avec \(a<b\), \(f\) et \(g\) dans \(\mathscr{C}^0([a,b],\mathbf{R})\) avec \(f\leqslant 0\).
[planches/ex1057]
Soit \(z\in\mathscr{C}^2([a,b],\mathbf{R})\) telle que \(z''+fz=0\). Étudier la convexité de \(z^2\).
Montrer que le problème \(y''+fy=g\), \(y(a)=y(b)=0\) possède une et une seule solution.
[oraux/ex3009] ens PC 2009 Soient \((p,q)\in\mathscr{C}^0([0,1],\mathbf{R})\) avec \(q\leqslant 0\) et \((E)\) : \(y''+py'+qy=0\). Soit \((a,b)\in\mathbf{R}^2\). Montrer qu’il existe une unique solution \(f\) de \((E)\) telle que \(f(0)=a\) et \(f(1)=b\).
[oraux/ex3009]
[concours/ex0810] mines MP 1997 Soit l’équation différentielle \((E)\) : \(y''-f(x)y=g(x)\) avec \(f\), \(g\in\mathscr{C}([a,b],\mathbf{R})\) et \(f\geqslant 0\).
[concours/ex0810]
Montrer qu’il existe au plus une solution de \((E)\) s’annulant en \(a\) et en \(b\).
Montrer qu’il existe deux solutions \(u\) et \(v\) de \(y''-f(x)y=0\) vérifiant les conditions \(u(a)=0\), \(u'(a)=1\) et \(v(b)=0\), \(v'(b)=1\).
Montrer qu’il existe une unique solution de \((E)\) s’annulant en \(a\) et en \(b\) et l’exprimer à l’aide de \(u\) et \(v\).
[concours/ex2393] mines M 1995 Soient \(f\) et \(g\) continues de \([a,b]\) dans \(\mathbf{R}\). On suppose que \(f\) est à valeurs dans \(\mathbf{R}_-\). Montrer que l’équation différentielle \(y''+f(x)y=g(x)\) possède une et une seule solution sur \([a,b]\) vérifiant \(y(a)=y(b)=0\).
[concours/ex2393]
[examen/ex0104] mines PSI 2023 Soient \(u\in\mathscr{C}^0(\mathbf{R}^+,\mathbf{R})\) intégrable sur \(\mathbf{R}^+\) et \(f\in\mathscr{C}^2(\mathbf{R}^+,\mathbf{R})\) telle que \(f''+(1+u)f=0\). Soit \(g:x\in\mathbf{R}^+\mapsto f(x)+\displaystyle\int_0^x\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(x-t)\,f(t)\,u(t)\,\mathrm{d}t\).
[examen/ex0104]
Trouver une équation différentielle linéaire vérifiée par \(g\).
En déduire l’existence de \(c\) positif tel que : \(\forall x\in\mathbf{R}^+\), \(|f(x)|\leqslant c+\displaystyle\int_0^x|f(t)\,u(t)|\,\mathrm{d}t\).
Montrer que \(f\) est bornée.
[oraux/ex2850] ens cachan MP 2005 Soit \(q:\mathbf{R}\rightarrow\mathbf{R}\) une fonction continue, positive, de période \(\pi\) et non nulle. Soit \(\mathscr{E}\) l’ensemble des solutions de : \(y''+qy=0\).
[oraux/ex2850]
Soit \(\varphi\in\mathscr{E}\). Montrer que l’ensemble des zéros de \(\varphi\) n’est ni majoré ni minoré.
On suppose \(\varphi\) non nulle ; Soit \(\psi\in\mathscr{E}\) non proportionnelle à \(\varphi\). Montrer que les zéros de \(\psi\) séparent ceux de \(\varphi\).
[planches/ex1026] centrale PSI 2014 Soient \(a\), \(b\in\mathbf{R}\) tels que \(a<b\) et \(f\), \(g\in\mathscr{C}^0([a,b],\mathbf{R})\). On suppose \(f>0\). On considère l’équation différentielle \((E)\) : \(y''-fy=g\).
[planches/ex1026]
Montrer que l’équation homogène associée à \((E)\) possède deux solutions \(u\) et \(v\) caractérisées par : \(u(a)=0\), \(u'(a)=1\) et \(v(b)=0\), \(v'(b)=1\).
Montrer que \((E)\) possède au plus une solution s’annulant en \(a\) et en \(b\).
Indication : Considérer \(y_1\) et \(y_2\) deux telles solutions et \(h=y_2-y_1\). Remarquer que \(h^2\) est convexe.
Montrer que \((E)\) possède une solution s’annulant en \(a\) et \(b\) et en donner une expression en fonction de \(u\), \(v\), \(f\) et \(g\).
[oraux/ex3149] polytechnique, espci PC 2011 Soient \(I\) un intervalle ouvert de \(\mathbf{R}\), \(a\) et \(b\) dans \(\mathscr{C}^0(I,\mathbf{R})\) et \((E)\) l’équation différentielle \(y''+ay'+by=0\).
[oraux/ex3149]
Soit \(f\) une solution non nulle de \((E)\). Montrer que les zéros de \((E)\) sont isolés.
Soient \(f\) et \(g\) deux solutions non nulles de \((E)\). On suppose que \(f\) et \(g\) ont un zéro commun. Montrer que \(f\) et \(g\) sont proportionnelles.
Soient \(f\) et \(g\) deux solutions linéairement indépendantes de \((E)\). Montrer qu’entre deux zéros consécutifs de \(f\) il y a exactement un zéro de \(g\).
[planches/ex1054] mines MP 2015 Soient \(q\in\mathscr{C}^0([0,1],\mathbf{R})\) et \(\varphi\) une solution non nulle de l’équation différentielle \(\varphi''+q(x)\varphi=0\). Montrer que \(\varphi\) ne s’annule qu’un nombre fini de fois dans \([0,1]\).
[planches/ex1054]
[concours/ex2465] ens lyon M 1995 Soient \(f\) et \(g\) deux applications continues et bornées de \(\mathbf{R}\) dans \(\mathbf{R}\). On considère l’équation différentielle \((E)\) : \(x''+f(t)x'+g(t)x=0\) et les conditions initiales \((CI)\) : \(x(0)=\alpha\), \(x'(0)=\beta\).
[concours/ex2465]
Montrer qu’il existe une unique fonction \(u\) définie sur \(\mathbf{R}\) vérifiant \((E)\) et \((CI)\).
Montrer que l’espace \(\mathscr{S}\) des solutions de \((E)\) définies sur \(\mathbf{R}\) est de dimension \(2\).
Soient \(x_1\) et \(x_2\) dans \(\mathscr{S}\). On pose \(w(t)=x_1(t)x'_2(t)-x_2(t)x'_1(t)\). Montrer que \(w\) est la fonction nulle ou ne s’annule jamais.
Soit \((x_1,x_2)\) une base de \(\mathscr{S}\) \(t_1<t_2\) deux zéros consécutifs de \(x_1\). Montrer qu’il existe un unique zéro de \(x_2\) sur \(\left]t_1,t_2\right[\).
On suppose \(f=0\) et \(g\leqslant 0\). Montrer qu’un élément de \(\mathscr{S}\) s’annule au plus une fois.
[planches/ex1022] centrale MP 2014 Soient \(I\) un intervalle de \(\mathbf{R}\) non vide et non réduit à un point, \(p\), \(q:I\rightarrow\mathbf{R}\) continues et \((E)\) : \(y''+py'+qy=0\). On suppose \(q\neq0\). On étudie l’existence de deux solutions, notées \(y_1\) et \(y_2\) de \((E)\), inverses l’une de l’autre, c’est-à-dire que \(y_1y_2=1\).
[planches/ex1022]
Si \(p\) et \(q\) sont constantes, donner une condition suffisante d’existence.
On considère \((E_1)\) : \(y''+\displaystyle{y'\over x}-{y\over4x^2}=0\) sur \(\left]1,+\infty\right[\) et \((E_2)\) : \(y''-\displaystyle{y'\over x\mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits x}-y{(\mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits x)^2\over4}=0\) sur \(\mathbf{R}_+^*\). Trouver pour \((E_1)\) puis pour \((E_2)\) un couple de solutions inverses l’une de l’autre.
On revient à l’équation générale \((E)\) et on suppose qu’elle admet un couple de solutions inverses l’une de l’autre \((y_1,y_2)\). On note \(W\) le wronskien de \((y_1,y_2)\).
Montrer que \(y_1\) et \(y_2\) sont linéairement indépendantes. Qu’en déduit-on pour \(W\) ?
Exprimer \(W\) en fonction de \(y_1\).
Montrer que \(W'+pW=0\).
Donner une condition nécessaire et suffisante sur \((p,q)\) pour que \((E)\) possède un couple de solutions inverses l’une de l’autre.
Vous pouvez choisir la typographie des énoncés : HTML (MathJax, plus joli) ou sous forme d'image (GIF, plus rapide)