[planches/ex0925] ens PC 2013 Soient \(f\in\mathscr{C}^0(\mathbf{R},\mathbf{R}_+)\) telle que \(f(x)\rightarrow\ell>0\) quand \(x\rightarrow+\infty\), et \((*)\) : \(y''+fy=0\). Soit \(y:\mathbf{R}\rightarrow\mathbf{R}\) solution de \((*)\) telle que \(y(0)=0\).
[planches/ex0925]
Que dire si \(y'(0)=0\) ?
On suppose \(y'(0)>0\). Montrer qu’il existe \(t>0\) tel que \(y'(t)=0\).
Montrer que \(y\) a une infinité de zéros sur \(\mathbf{R}_+\).
[planches/ex6387] ens lyon PC 2021 Pour \(\varphi_1\) et \(\varphi_2\in\mathscr{C}^2(\mathbf{R},\mathbf{R})\), on pose \(W=\left|\matrix{\varphi_1&\varphi'_1\cr\varphi_2&\varphi'_2}\right|\).
[planches/ex6387]
Soit \(q\) une fonction continue de \(\mathbf{R}\) dans \(\mathbf{R}\). Soient \(\varphi_1\) et \(\varphi_2\) deux solutions de l’équation différentielle \(y''+qy=0\). Que dire de la fonction \(W\) ?
Soient \(q_1\) et \(q_2\) deux fonctions continues de \(\mathbf{R}\) dans \(\mathbf{R}\). Soit \(\varphi_1\) une solution de \(y''+q_1y=0\) et \(\varphi_2\) une solution de \(y''+q_2y=0\). Calculer \(W'\).
Soit \(q\) une fonction continue de \(\mathbf{R}\) dans \(\mathbf{R}\). On suppose que \(q\) est minorée par un réel strictement positif \(\alpha\). Montrer que toute solution de l’équation différentielle \(y''+qy=0\) s’annule une infinité de fois.
[oraux/ex2949] ens paris MP 2008 Soit \(g\in\mathscr{C}^0(\mathbf{R}_+^*,\mathbf{R}_+^*)\). On suppose qu’il existe \(m>0\) tel que \(g\geqslant m\). Soit \(f:\mathbf{R}_+^*\rightarrow\mathbf{R}\) une solution non nulle de : \(y''+gy=0\).
[oraux/ex2949]
Montrer que \(f\) admet une infinité de zéros.
On suppose \(g\) croissante. Montrer que \(f\) est majorée au voisinage de \(+\infty\).
[planches/ex3693] mines PSI 2018
[planches/ex3693]
Soit \(y:[a,b]\rightarrow\mathbf{R}\) de classe \(\mathscr{C}^1\), \(\varphi:[a,b]\rightarrow\mathbf{R}_+\) continue et \(c\in\mathbf{R}\) tels que \(\forall x\in[a,b]\), \(y(x)\leqslant c+\displaystyle\int_a^x\varphi(t)y(t)\,dt\).
Montrer que, pour tout \(x\in[a,b]\), \(y(x)\leqslant c\mathop{\mathchoice{\hbox{exp}}{\hbox{exp}}{\mathrm{exp}}{\mathrm{exp}}}\nolimits\left(\displaystyle\int_a^x\varphi(t)\,dt\right)\).
Soit \(q\) une fonction de classe \(\mathscr{C}^1\) de \(\mathbf{R}_+\) dans \(\mathbf{R}_+^*\), croissante, et \(f\) une solution de l’équation \(f''+qf=0\). Montrer que \(f\) est bornée.
[concours/ex6044] centrale MP 2007 Soient \(m\in\mathbf{R}_+^*\) et \(q\in\mathscr{C}^0(\mathbf{R}_+,\mathbf{R})\) telle que : \(\forall t\in\mathbf{R}_+\), \(q(t)\geqslant m\). On note \((E)\) l’équation différentielle \(y''+qy=0\). Soit \(f\) une solution non nulle de \((E)\).
[concours/ex6044]
Montrer qu’il existe \(p\), \(g:\mathbf{R}_+\rightarrow\mathbf{R}\) de classe \(C^1\) avec \(p>0\) telles que \(f=p\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits g\) et \(f'=p\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits g\).
Exprimer \(g'\) en fonction de \(g\) et \(q\).
En déduire que \(g\) est un \(C^1\)-difféomorphisme de \(\mathbf{R}_+\) sur \(g(\mathbf{R}_+)\).
Montrer que \(f\) s’annule une infinité de fois.
[oraux/ex3141] polytechnique MP 2011 Soit \(f\in\mathscr{C}^1(\mathbf{R}_+,\mathbf{R})\) de limite nulle en \(+\infty\) et de dérivée intégrable sur \(\mathbf{R}_+\). Montrer que toutes les solutions de l’équation différentielle \(y''+(1+f(t))y=0\) sont bornées sur \(\mathbf{R}_+\).
[oraux/ex3141]
[planches/ex1114] centrale PSI 2016 On considère l’équation différentielle \[(1)\quad y''=(1+x^4)y.\]
[planches/ex1114]
Montrer que \((1)\) possède une unique solution \(y\) telle que \(y(0)=y'(0)=1\).
Soit \(f\) une solution de \((1)\). On suppose \(\displaystyle{1\over f^2}\) intégrable. Montrer que \(x\mapsto\displaystyle\int_x^{+\infty}{1\over f^2(t)}\,dt\) est également solution de \((1)\) (?).
Montrer que si \(f\) solution de \((E)\) vérifie \(f(0)=f'(0)=1\) alors \(\displaystyle{1\over f^2}\) est intégrable.
[planches/ex8628] centrale PSI 2022 (avec Python)
[planches/ex8628]
Python
Soit \(q:\mathbf{R}_+\longrightarrow\mathbf{R}\) continue. On s’intéresse à l’équation différentielle \((E_{a,b})\) : \(y''+(1+q)y=0\), \(y(0)=a\), et \(y'(0)=b\).
Tracer avec Python les solutions pour \((a,b)\in\{(1,0),(0,1)\}\) et pour les fonctions \(q:t\longmapsto\displaystyle{1\over\sqrt{1+t}}\), \(q:t\longmapsto\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(t)\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\left(\displaystyle{1\over t}\right)\), \(q:t\longmapsto\displaystyle{1\over1+t^2}\). et \(q:t\longmapsto\displaystyle{-t^2\over2(1+t^2)}\). On tracera ces solutions sur l’intervalle \([0,50]\).
Pour quelles fonctions \(q\) la solution semble-t-elle bornée ?
On suppose dans cette question que \(q\) est intégrable sur \(\mathbf{R}_+\).
Soit \(z:x\longmapsto\displaystyle\int_0^x\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(x-t)f(t)\,dt\) avec \(f\) continue, intégrable sur \(\mathbf{R}_+\). Calculer \(z''+z\).
Soit \(y\) une solution de \((E_{a,b})\).
Montrer que, pour \(t\in\mathbf{R}_+\), \(0\leqslant|y(t)|\leqslant|a|+|b|+\displaystyle\int_0^x|q(t)|\,|y(t)|\,dt\).
En déduire que \(y\) est bornée.
La condition \(q\) intégrable est-elle suffisante/nécessaire pour que les solutions de \((E_{a,b})\) soient bornées ?
[planches/ex1115] centrale PSI 2016 On considère l’équation différentielle \(y''=x^4y\) (?).
[planches/ex1115]
Montrer qu’il existe une unique solution \(f\) telle que \(f(0)=f'(0)=1\).
On admet que \(1/f^2\) est définie et intégrable sur \(\mathbf{R}_+\). Montrer que \(g:x\mapsto f(x)\displaystyle\int_x^{+\infty}{dt\over f(t)^2}\) est aussi solution de l’équation étudiée.
Montrer le résultat admis dans la question précédente.
[oraux/ex2901] centrale PSI 2005 Soit \(E\) l’ensemble des \(f\in\mathscr{C}^2(\mathbf{R}_+,\mathbf{R})\) telles que : \(\forall x\in\mathbf{R}\), \(f''(x)-(1+x^4)f(x)=0\).
[oraux/ex2901]
Montrer que \(E\) contient une unique fonction \(f_0\) telle que \(f_0(0)=1\) et \(f_0'(0)=1\).
Montrer que \(f_0^2\) est convexe.
Montrer que : \(\forall t\in\mathbf{R}_+\), \(f_0(t)\geqslant 1\).
Montrer que \(1/f_0^2\) est intégrable sur \(\mathbf{R}_+\).
Soit \(f_1:x\in\mathbf{R}_+\mapsto f_0(x)\displaystyle\int_x^{+\infty}{dt\over f_0^2(t)}\).
Montrer que \(f_1\in E\).
Montrer que \(f_1'\geqslant 0\) et que \(f_1\) est bornée.
Quels sont les éléments bornés de \(E\) ?
Vous pouvez pré-filtrer l'affichage des exercices, en imposant par exemple uniquement des exercices posés aux concours