[planches/ex3378] polytechnique, espci PC 2018 Soient \(a\) et \(b\) dans \(\mathscr{C}^0(\mathbf{R},\mathbf{R})\) et \((E)\) l’équation différentielle \(y''+ay'+by=0\). Montrer qu’il existe deux solutions \(f\), \(g\) de \(E\) vérifiant \(fg=1\) si et seulement si \(b\) est de classe \(\mathscr{C}^1\), \(b\leqslant 0\) et \(b'=-2ab\).
[planches/ex3378]
[planches/ex1053] polytechnique, espci PC 2015 Soient \(a\) et \(b\) dans \(\mathscr{C}^1(\mathbf{R},\mathbf{R})\) et \((E)\) l’équation différentielle \(y''+ay'+by=0\). Donner une condition nécessaire et suffisante sur \(a\) et \(b\) pour qu’il existe \(f\) et \(g\) solutions de \((E)\) telles que \(fg=1\).
[planches/ex1053]
[oraux/ex3103] mines PC 2010 Soit \(\varphi\in\mathscr{C}^1(\mathbf{R}_+,\mathbf{R}_+^*)\) strictement croissante. Montrer que toute solution de l’équation différentielle \((E)\) : \(y''+\varphi y=0\) est bornée sur \(\mathbf{R}\).
[oraux/ex3103]
[planches/ex0925] ens PC 2013 Soient \(f\in\mathscr{C}^0(\mathbf{R},\mathbf{R}_+)\) telle que \(f(x)\rightarrow\ell>0\) quand \(x\rightarrow+\infty\), et \((*)\) : \(y''+fy=0\). Soit \(y:\mathbf{R}\rightarrow\mathbf{R}\) solution de \((*)\) telle que \(y(0)=0\).
[planches/ex0925]
Que dire si \(y'(0)=0\) ?
On suppose \(y'(0)>0\). Montrer qu’il existe \(t>0\) tel que \(y'(t)=0\).
Montrer que \(y\) a une infinité de zéros sur \(\mathbf{R}_+\).
[concours/ex0100] polytechnique MP 1996 Soit \(I\) un intervalle de \(\mathbf{R}\) et \(A\) (resp. \(B\)) une application \(C^1\) (resp. \(C^0\)) de \(I\) dans \(\mathbf{R}\). Donner une condition nécessaire et suffisante pour que l’équation différentielle \(y''+A(x)y'+B(x)y=0\) admette deux solutions \(y_1\) et \(y_2\) telles que \(y_2=xy_1\).
[concours/ex0100]
Résoudre \(y''+2xy'+(1+x^2)y=xe^{-x^2/2}\).
[oraux/ex2949] ens paris MP 2008 Soit \(g\in\mathscr{C}^0(\mathbf{R}_+^*,\mathbf{R}_+^*)\). On suppose qu’il existe \(m>0\) tel que \(g\geqslant m\). Soit \(f:\mathbf{R}_+^*\rightarrow\mathbf{R}\) une solution non nulle de : \(y''+gy=0\).
[oraux/ex2949]
Montrer que \(f\) admet une infinité de zéros.
On suppose \(g\) croissante. Montrer que \(f\) est majorée au voisinage de \(+\infty\).
[planches/ex0963] centrale PSI 2013 Soient \(I\subset\mathbf{R}\) un intervalle, \(A\in\mathscr{C}^1(I,\mathbf{R})\), \(B\in\mathscr{C}^0(I,\mathbf{R})\). Trouver une condition nécessaire et suffisante pour que l’équation différentielle \(y''+Ay'+By=0\) admette deux solutions \(y_1\) et \(y_2\) telles que \(\forall x\in I\), \(y_2(x)=xy_1(x)\).
[planches/ex0963]
[concours/ex5307] ens paris MP 2007 Soient \(f:\mathbf{R}_+\rightarrow\mathbf{R}\) de classe \(C^2\) et \(g:\mathbf{R}_+\rightarrow\mathbf{R}_+^*\) strictement croissante telles que \(f''+gf=0\).
[concours/ex5307]
Montrer que l’ensemble des zéros de \(f\) n’est mas majoré.
Montrer que \(f\) est bornée au voisinage de \(+\infty\).
[oraux/ex3050] centrale MP 2009 Soient \(I\) un intervalle de \(\mathbf{R}\), \(a\in\mathscr{C}^1(I,\mathbf{R})\), \(b\in\mathscr{C}^0(I,\mathbf{R})\) et \((H)\) l’équation différentielle \(y''+ay'+by=0\).
[oraux/ex3050]
Donner une condition nécessaire et suffisante sur \(a\) et \(b\) pour qu’il existe deux solutions \(y_1\) et \(y_2\) de \((H)\) telles que \(x_2=xy_1\) et \(y_1\neq0\).
Déterminer alors toutes les solutions de \((H)\).
[concours/ex2908] centrale M 1994 Soient \(I\) un intervalle réel, \(p\) et \(q\) des applications continues définies sur \(I\) et à valeurs réelles. Soit \((E)\) l’équation différentielle : \(y''+py'+qy=0\). Trouver une condition portant sur les fonctions \(p\) et \(q\) pour que \((E)\) admette sur \(I\) deux solutions \(u\) et \(v\) non nulles telles que pour tout \(x\), on ait : \(v(x)=xu(x)\).
[concours/ex2908]
Application : résoudre, sur \(\left]0,+\infty\right[\), puis sur \(\left[0,+\infty\right[\), l’équation : \[x^2y''+x(1-2x)y'+\left(x^2-x-{1\over4}\right)y=x^{5/2}.\]
Vous pouvez choisir les informations imprimées pour chaque exercice des PDF : référence interne, taille de la famille