[planches/ex1022] centrale MP 2014 Soient \(I\) un intervalle de \(\mathbf{R}\) non vide et non réduit à un point, \(p\), \(q:I\rightarrow\mathbf{R}\) continues et \((E)\) : \(y''+py'+qy=0\). On suppose \(q\neq0\). On étudie l’existence de deux solutions, notées \(y_1\) et \(y_2\) de \((E)\), inverses l’une de l’autre, c’est-à-dire que \(y_1y_2=1\).
[planches/ex1022]
Si \(p\) et \(q\) sont constantes, donner une condition suffisante d’existence.
On considère \((E_1)\) : \(y''+\displaystyle{y'\over x}-{y\over4x^2}=0\) sur \(\left]1,+\infty\right[\) et \((E_2)\) : \(y''-\displaystyle{y'\over x\mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits x}-y{(\mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits x)^2\over4}=0\) sur \(\mathbf{R}_+^*\). Trouver pour \((E_1)\) puis pour \((E_2)\) un couple de solutions inverses l’une de l’autre.
On revient à l’équation générale \((E)\) et on suppose qu’elle admet un couple de solutions inverses l’une de l’autre \((y_1,y_2)\). On note \(W\) le wronskien de \((y_1,y_2)\).
Montrer que \(y_1\) et \(y_2\) sont linéairement indépendantes. Qu’en déduit-on pour \(W\) ?
Exprimer \(W\) en fonction de \(y_1\).
Montrer que \(W'+pW=0\).
Donner une condition nécessaire et suffisante sur \((p,q)\) pour que \((E)\) possède un couple de solutions inverses l’une de l’autre.
[concours/ex5307] ens paris MP 2007 Soient \(f:\mathbf{R}_+\rightarrow\mathbf{R}\) de classe \(C^2\) et \(g:\mathbf{R}_+\rightarrow\mathbf{R}_+^*\) strictement croissante telles que \(f''+gf=0\).
[concours/ex5307]
Montrer que l’ensemble des zéros de \(f\) n’est mas majoré.
Montrer que \(f\) est bornée au voisinage de \(+\infty\).
[concours/ex0100] polytechnique MP 1996 Soit \(I\) un intervalle de \(\mathbf{R}\) et \(A\) (resp. \(B\)) une application \(C^1\) (resp. \(C^0\)) de \(I\) dans \(\mathbf{R}\). Donner une condition nécessaire et suffisante pour que l’équation différentielle \(y''+A(x)y'+B(x)y=0\) admette deux solutions \(y_1\) et \(y_2\) telles que \(y_2=xy_1\).
[concours/ex0100]
Résoudre \(y''+2xy'+(1+x^2)y=xe^{-x^2/2}\).
[planches/ex6387] ens lyon PC 2021 Pour \(\varphi_1\) et \(\varphi_2\in\mathscr{C}^2(\mathbf{R},\mathbf{R})\), on pose \(W=\left|\matrix{\varphi_1&\varphi'_1\cr\varphi_2&\varphi'_2}\right|\).
[planches/ex6387]
Soit \(q\) une fonction continue de \(\mathbf{R}\) dans \(\mathbf{R}\). Soient \(\varphi_1\) et \(\varphi_2\) deux solutions de l’équation différentielle \(y''+qy=0\). Que dire de la fonction \(W\) ?
Soient \(q_1\) et \(q_2\) deux fonctions continues de \(\mathbf{R}\) dans \(\mathbf{R}\). Soit \(\varphi_1\) une solution de \(y''+q_1y=0\) et \(\varphi_2\) une solution de \(y''+q_2y=0\). Calculer \(W'\).
Soit \(q\) une fonction continue de \(\mathbf{R}\) dans \(\mathbf{R}\). On suppose que \(q\) est minorée par un réel strictement positif \(\alpha\). Montrer que toute solution de l’équation différentielle \(y''+qy=0\) s’annule une infinité de fois.
[oraux/ex2949] ens paris MP 2008 Soit \(g\in\mathscr{C}^0(\mathbf{R}_+^*,\mathbf{R}_+^*)\). On suppose qu’il existe \(m>0\) tel que \(g\geqslant m\). Soit \(f:\mathbf{R}_+^*\rightarrow\mathbf{R}\) une solution non nulle de : \(y''+gy=0\).
[oraux/ex2949]
Montrer que \(f\) admet une infinité de zéros.
On suppose \(g\) croissante. Montrer que \(f\) est majorée au voisinage de \(+\infty\).
[planches/ex3693] mines PSI 2018
[planches/ex3693]
Soit \(y:[a,b]\rightarrow\mathbf{R}\) de classe \(\mathscr{C}^1\), \(\varphi:[a,b]\rightarrow\mathbf{R}_+\) continue et \(c\in\mathbf{R}\) tels que \(\forall x\in[a,b]\), \(y(x)\leqslant c+\displaystyle\int_a^x\varphi(t)y(t)\,dt\).
Montrer que, pour tout \(x\in[a,b]\), \(y(x)\leqslant c\mathop{\mathchoice{\hbox{exp}}{\hbox{exp}}{\mathrm{exp}}{\mathrm{exp}}}\nolimits\left(\displaystyle\int_a^x\varphi(t)\,dt\right)\).
Soit \(q\) une fonction de classe \(\mathscr{C}^1\) de \(\mathbf{R}_+\) dans \(\mathbf{R}_+^*\), croissante, et \(f\) une solution de l’équation \(f''+qf=0\). Montrer que \(f\) est bornée.
[planches/ex0963] centrale PSI 2013 Soient \(I\subset\mathbf{R}\) un intervalle, \(A\in\mathscr{C}^1(I,\mathbf{R})\), \(B\in\mathscr{C}^0(I,\mathbf{R})\). Trouver une condition nécessaire et suffisante pour que l’équation différentielle \(y''+Ay'+By=0\) admette deux solutions \(y_1\) et \(y_2\) telles que \(\forall x\in I\), \(y_2(x)=xy_1(x)\).
[planches/ex0963]
[equadiff/ex0106] On considère l’équation \(x''+q(t)x=0\) où \(q\) est une fonction de classe \(C^1\) sur \(\mathbf{R}\), strictement positive et croissante.
[equadiff/ex0106]
Montrer que toutes les solutions de l’équation sont bornées sur \(\mathbf{R}\).
[planches/ex7278] centrale PC 2021
[planches/ex7278]
Soit \(g\in\mathscr{C}^2(\mathbf{R},\mathbf{R})\) telle que \(g''\leqslant 0\).
Montrer que, pour tout \((t_0,t)\in\mathbf{R}^2\), \(g(t)\leqslant g(t_0)+(t-t_0)g'(t_0)\).
Soit \(a>0\). Soit \(q\) une fonction continue de \(\mathbf{R}\) dans \(\mathbf{R}\) telle que \(\forall t\in\mathbf{R}\), \(q(t)\geqslant a\). Soit \(f\) une solution de l’équation différentielle \(y''+qy=0\). Montrer que l’ensemble des zéros de \(f\) n’est pas majoré.
[oraux/ex5532] mines PC 2012 Soient \(\varphi\in{\cal C}^1(\mathbf{R}^+,\mathbf{R}^{+*})\) croissante et \((E)\) l’équation \((E)\) : \(x''(t)+\varphi(t)\, x(t)=0\). Montrer que \(x\) est bornée.
[oraux/ex5532]
Indication : On multipliera par \(x'/\varphi\).
Dans la page dédiée à l'examen d'un exercice, vous pouvez choisir de quelle façon sont affichées les solutions