[planches/ex6507] polytechnique MP 2021
[planches/ex6507]
Soient \(q_1\), \(q_2\in\mathscr{C}^0(\mathbf{R}_+,\mathbf{R})\) telles que \(q_1\leqslant q_2\). Soient \(y_1\) (resp. \(y_2\)) une solution non nulle de \(y''+q_1y=0\) (resp. \(y''+q_2y=0\)). Soient \(u\), \(v\in\mathbf{R}_+\) tels que \(u<v\), \(y_1(u)=y_1(v)=0\). Montrer que \(y_2\) s’annule sur \([u,v]\).
Soit \(m\), \(M\in\mathbf{R}\) avec \(0<m\leqslant M\). Soit \(y\) une solution non nulle de \(y''+qy=0\) où \(q\in\mathscr{C}^0(\mathbf{R}_+,\mathbf{R})\) vérifie \(m\leqslant q\leqslant M\). Montrer que l’on peut ranger les zéros de \(y\) en une suite croissante \((t_n)_{n\geqslant 0}\) avec, pour tout \(n\in\mathbf{N}\), \(t_{n+1}-t_n\in\left[-\displaystyle{\pi\over\sqrt M},{\pi\over\sqrt M}\right]\).
[planches/ex1109] centrale MP 2016
[planches/ex1109]
Soient \(q_1\) et \(q_2\) deux fonctions continues de \(\mathbf{R}\) dans \(\mathbf{R}\) telles que \(q_2\geqslant q_1\), \(u\) (resp. \(v\)) une solution non identiquement nulle de \(y_1''+q_1y=0\) (resp. \(y''+q_2y=0\)), \(a\) et \(b\) deux zéros consécutifs de \(u\). Montrer que soit \(v/u\) est constante sur \(\left]a,b\right[\), soit \(v\) s’annule sur \(\left]a,b\right[\).
Soit \(q\) une fonction continue de \(\mathbf{R}\) dans \(\mathbf{R}_-\). Que dire de l’ensemble des zéros d’une solution de \(y''+qy=0\) ?
Soient \(c\) et \(d\) deux éléments de \(\mathbf{R}_+^*\) tels que \(c<d\), \(q\) une fonction continue de \(\mathbf{R}\) dans \([c^2,d^2]\). Que dire de l’ensemble des zéros d’une solution de \(y''+qy=0\) ?
[oraux/ex3074] ens lyon MP 2010 Soient \(p\) et \(q\) deux fonctions continues de \(\mathbf{R}\) dans \(\mathbf{R}\) telles que \(p\leqslant q\) et \(f\in\mathscr{C}^2(\mathbf{R},\mathbf{R})\) non identiquement nulle telle que \(f''+pf=0\).
[oraux/ex3074]
Montrer que les zéros de \(f\) sont isolés.
Soient \(x_1<x_2\) deux zéros consécutifs de \(f\) et \(g\in\mathscr{C}^2(\mathbf{R},\mathbf{R})\) telle que \(g''+qg=0\). Montrer que \(g\) s’annule sur \([x_1,x_2]\).
[concours/ex2909] centrale M 1994 Soient \(p\) et \(q\) deux applications continues sur un intervalle \(I\), à valeurs réelles, et telles que \(q>p\). Soient \(x_1\) et \(x_2\) des applications non identiquement nulles sur \(I\) vérifiant respectivement \(x_1''+px_1=0\) et \(x_2''+qx_2=0\).
[concours/ex2909]
Montrer qu’entre deux zéros consécutifs de \(x_1\), il existe un unique zéro de \(x_2\).
[oraux/ex3049] centrale MP 2009 Soit \(I\) un intervalle ouvert et non vide de \(\mathbf{R}\).
[oraux/ex3049]
Soient \(A\) et \(B\) dans \(\mathscr{C}^0(I,\mathbf{R})\) et \((E)\) : \(y''+Ay'+By=0\).
Soit \(f\) une solution non identiquement nulle de \((E)\) et \(S\) un segment de \(I\). Montrer que \(f\) s’annule un nombre fini de fois sur \(S\).
Soient \(f\) et \(g\) deux solutions linéairement indépendantes de \((E)\). Soit \((u,v)\in I^2\) tel que \(u<v\) et \(f(u)=f(v)=0\). Montrer que \(g\) possède un zéro sur \(\left]u,v\right[\).
Soient \(p\) et \(q\) dans \(\mathscr{C}^0(I,\mathbf{R})\) telles que : \(\forall x\in I\), \(p(x)<q(x)\). Soient \(f\), \(g\in\mathscr{C}^2(I,\mathbf{R})\) non identiquement nulles et telles que : \(f''+pf=0\) et \(g''+qg=0\). Soit \((u,v)\in I^2\) tel que \(u<v\) et \(f(u)=f(v)=0\). Montrer que \(g\) possède un zéro sur \(\left]u,v\right[\).
[oraux/ex2840] centrale 2004 Soient \(r\) et \(q\) deux fonctions continues sur \(I=[a,b]\), telles que \(\forall x\in I\), \(r(x)\geqslant q(x)\). On considère les équations différentielles : \[\begin{array}{lcc}y''+qy=0&&(E_1)\\z''+rz=0&&(E_2)\end{array}\]
[oraux/ex2840]
Soient \(x_0\) et \(x_1\) deux zéros consécutifs de \(y\), solution non nulle de \((E_1)\). Peut-on avoir \(y'(x_0)=0\) ou \(y'(x_1)=0\) ? Que dire des signes de \(y'(x_0)\) et \(y'(x_1)\) ?
Soit \(z\) une solution de \((E_2)\). On note \(w(x)=y(x)z'(x)-y'(x)z(x)\). Calculer \(w'(x)\) et exprimer \(w(x_1)-w(x_0)\).
Montrer que pour tout \(z\) solution de \((E_2)\), \(z\) s’annule entre \(x_0\) et \(x_1\).
Montrer que toute solution de \((E_1)\) est proportionnelle à \(y\) ou alors qu’elle s’annule entre \(x_0\) et \(x_1\).
Application : Soit \(y\) une solution de l’équation \(y''+e^{x^2}y=0\). La fonction \(y\) s’annule-t-elle ?
[concours/ex0810] mines MP 1997 Soit l’équation différentielle \((E)\) : \(y''-f(x)y=g(x)\) avec \(f\), \(g\in\mathscr{C}([a,b],\mathbf{R})\) et \(f\geqslant 0\).
[concours/ex0810]
Montrer qu’il existe au plus une solution de \((E)\) s’annulant en \(a\) et en \(b\).
Montrer qu’il existe deux solutions \(u\) et \(v\) de \(y''-f(x)y=0\) vérifiant les conditions \(u(a)=0\), \(u'(a)=1\) et \(v(b)=0\), \(v'(b)=1\).
Montrer qu’il existe une unique solution de \((E)\) s’annulant en \(a\) et en \(b\) et l’exprimer à l’aide de \(u\) et \(v\).
[planches/ex2137] mines MP 2017 Soient \(q\) une fonction continue de \([0,1]\) dans \(\mathbf{R}_+\), \(f\) une fonction continue de \([0,1]\) dans \(\mathbf{R}\), \((a,b)\in\mathbf{R}^2\). Montrer qu’il existe une unique fonction \(y\) de \([0,1]\) dans \(\mathbf{R}\) de classe \(\mathscr{C}^2\) telle que \(y''-qy=f\) et \((y(0),y(1))=(a,b)\).
[planches/ex2137]
[oraux/ex3041] mines PC 2009 Soient \(q\in\mathscr{C}^0(\mathbf{R},\mathbf{R})\) et \((E)\) : \(y''+qy=0\). Soient \(u\) et \(v\) deux solutions linéairement indépendantes de \((E)\).
[oraux/ex3041]
Montrer que les zéros de \(v\) sont isolés.
Montrer qu’entre deux zéros consécutifs de \(v\), \(u\) s’annule exactement une fois.
[oraux/ex3119] centrale PC 2010 Soient \(I\) un intervalle ouvert non vide de \(\mathbf{R}\), \(a\in\mathscr{C}^0(I,\mathbf{R}_+)\) et \(b\in\mathscr{C}^0(I,\mathbf{R})\). Soient \((E_1)\) : \(y''-a(x)y=0\) et \((E_2)\) : \(y''-a(x)y=b(x)\).
[oraux/ex3119]
Soit \(y\) une solution de \((E_1)\). On suppose qu’il existe \((x_1,x_2)\in I^2\) avec \(x_1<x_2\) tel que \(y(x_1)=y(x_2)=0\). Calculer \(\displaystyle\int_{x_1}^{x_2}y(x)^2a(x)\,dx\). Que dire de \(y\) ?
Soient \((x_1,x_2)\in I^2\) avec \(x_1<x_2\).
Montrer qu’il existe une unique solution \(y_1\) de \((E_2)\) telle que \(y_1(x_1)=0\) et \(y_1'(x_1)=1\).
Montrer qu’il existe une unique solution \(y_2\) de \((E_2)\) telle que \(y_2(x_1)=y_2(x_2)=0\).
Un exercice sélectionné se reconnaît à sa bordure rouge