[oraux/ex5642] centrale MP 2012 Soient \(q\in{\cal C}^0(\mathbf{R},\mathbf{R})\) paire et \(\pi\)-périodique, \((E)\) l’équation différentielle : \(y''+q\,y=0\).
[oraux/ex5642]
Montrer qu’il existe une unique solution \(y_1\) de \((E)\) telle que \(y_1(0)=1\) et \(y'_1(0)=0\) et une unique solution \(y_2\) de \((E)\) telle que \(y_2(0)=0\) et \(y'_2(0)=1\).
Montrer que \((y_1,y_2)\) est une base de l’espace vectoriel \(S\) des solutions de \((E)\).
Montrer que \(y_1\) est paire et \(y_2\) impaire.
Montrer que la fonction \(y_1\,y'_2-y'_1\,y_2\) est constante.
Pour \(y\in S\), on note \(f(y)\,:\;t\mapsto y(t+\pi)\).
Montrer que \(f\) est un endomorphisme de \(S\).
Déterminer la matrice \(A\) de \(f\) dans la base \((y_1,y_2)\).
Montrer que le polynôme caractéristique de \(A\) est de la forme \(X^2-2a\,X+1\), pour un certain réel \(a\).
On suppose \(a=1\). Montrer que \((E)\) admet une solution \(\pi\)-périodique non triviale.
On suppose \(a=-1\). Montrer que \((E)\) admet une solution \(2\pi\)-périodique non triviale.
On suppose \(|a|>1\). Montrer que \(f\) admet deux vecteurs propres linéairement indépendants. Montrer que ce sont des fonctions non bornées. En déduire les solutions bornées de \((E)\).
[planches/ex9271] ens paris, ens lyon, ens saclay, ens rennes MP 2023 Soit \(p:\mathbf{R}\rightarrow\mathbf{R}\) une fonction continue, non identiquement nulle, \(\pi\)-périodique et telle que \(\displaystyle\int_0^{\pi}p(t)\mathrm{d} t \geqslant 0\) et \(\displaystyle\int_0^\pi |p(t)| \mathrm{d} t\leqslant\frac{\pi}{4}\).
[planches/ex9271]
Montrer que l’équation \(u''+pu=0\) n’admet pas de solution \(u\) non nulle sur \(\mathbf{R}\) telle qu’il existe \(\lambda\in\mathbf{R}^*\) tel que \(\forall t\in\mathbf{R}\), \(u(t+\pi)=\lambda\, u(t).\)
[oraux/ex3097] mines PC 2010 Soient \(a\), \(b\in\mathscr{C}^0(\mathbf{R},\mathbf{R})\) et \((f,g)\) un système fondamental de solutions de l’équation différentielle \((E)\) : \(y''+ay'+by=0\). On suppose \(f\) paire et \(g\) impaire. Montrer que \(a\) est impaire et \(b\) est paire.
[oraux/ex3097]
[planches/ex1066] centrale PSI 2015 Soit \(a\in\mathscr{C}^1(\mathbf{R}_+,\mathbf{R})\) telle que l’intégrale \(\displaystyle\int_0^{+\infty}|a(x)|\,dx\) existe.
[planches/ex1066]
A-t-on nécessairement \(a(x)\mathrel{\mathop{\longrightarrow}\limits_{x\rightarrow+\infty}}0\) ?
Soit \(f\) vérifiant sur \(\mathbf{R}_+\) : \(y''(x)+(1+a(x))y(x)=0\). Soit \[g:x\in\mathbf{R}_+\mapsto f(x)+\int_0^x\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(x-t)a(t)f(t)\,dt.\] Montrer que \(g\) est de classe \(\mathscr{C}^2\) sur \(\mathbf{R}_+\), puis que \(g''+g=0\).
Montrer qu’il existe \(c\in\mathbf{R}_+\) tel que : \(\forall x\in\mathbf{R}_+\), \(|f(x)|\leqslant c+\displaystyle\int_0^x|a(t)|\,|f(t)|\,dt\).
Montrer que toutes les solutions de \(y''+(1+a)y=0\) sont bornées.
[concours/ex3236] mines M 1993 Soit \(u\) une application continue de \(\mathbf{R}_+\) dans \(\mathbf{R}\) et \(f\) une application continue de \(\mathbf{R}_+\) dans \(\mathbf{R}_+\). On suppose qu’il existe une constante \(A\) telle que, pour tout \(x\) de \(\mathbf{R}_+\), \[u(x)\leqslant A+\int_0^xf(t)u(t)\,dt.\] Montrer que \[u(x)\leqslant A\mathop{\mathchoice{\hbox{exp}}{\hbox{exp}}{\mathrm{exp}}{\mathrm{exp}}}\nolimits\left(\int_0^xf(t)\,dt\right).\] Soit \((E)\) l’équation différentielle : \(y''+y(1+g(t))=0\), où \(g\) est une application continue de \(\mathbf{R}_+\) dans \(\mathbf{R}\) telle que \(\displaystyle\int_0^{+\infty}\bigl|g(t)\bigr|\,dt\) converge. Montrer que toute solution de \(E\) est bornée.
[concours/ex3236]
[planches/ex0928] polytechnique MP 2013 Soit \(q:\mathbf{R}\rightarrow\mathbf{R}\) continue et intégrable. Montrer que toute solution de l’équation différentielle \(y''+(1+q(t))y=0\) est bornée sur \(\mathbf{R}\).
[planches/ex0928]
[planches/ex1134] tpe PC 2016 Soient \(I\) un intervalle de \(\mathbf{R}\) centré en zéro, \(\varphi\in\mathscr{C}^\infty(I,\mathbf{R})\) une fonction paire et \((E)\) l’équation différentielle \(y''(x)+\varphi(x)y(x)=0\). Soit \(y\) une solution de \((E)\). Montrer que \(y\) est de classe \(\mathscr{C}^\infty\) et que la fonction \(x\mapsto y(-x)\) est également solution de \((E)\).
[planches/ex1134]
[planches/ex1109] centrale MP 2016
[planches/ex1109]
Soient \(q_1\) et \(q_2\) deux fonctions continues de \(\mathbf{R}\) dans \(\mathbf{R}\) telles que \(q_2\geqslant q_1\), \(u\) (resp. \(v\)) une solution non identiquement nulle de \(y_1''+q_1y=0\) (resp. \(y''+q_2y=0\)), \(a\) et \(b\) deux zéros consécutifs de \(u\). Montrer que soit \(v/u\) est constante sur \(\left]a,b\right[\), soit \(v\) s’annule sur \(\left]a,b\right[\).
Soit \(q\) une fonction continue de \(\mathbf{R}\) dans \(\mathbf{R}_-\). Que dire de l’ensemble des zéros d’une solution de \(y''+qy=0\) ?
Soient \(c\) et \(d\) deux éléments de \(\mathbf{R}_+^*\) tels que \(c<d\), \(q\) une fonction continue de \(\mathbf{R}\) dans \([c^2,d^2]\). Que dire de l’ensemble des zéros d’une solution de \(y''+qy=0\) ?
[planches/ex3691] mines PSI 2018 On considère l’équation différentielle \((E):y''+a(t)y'+b(t)y=0\) où \(a\) et \(b\) désignent des fonctions continues de \(\mathbf{R}\) dans \(\mathbf{R}\).
[planches/ex3691]
Calculer pour deux solutions \(f\), \(g\) de \((E)\) la quantité \(W=fg'-f'g\).
On suppose \(a\) impaire et \(b\) paire. Montrer que la fonction \(f\) solution de \((E)\) avec les conditions initiales \(f(0)=1\) et \(f'(0)=1\) est paire. Montrer de même que la fonction \(g\) solution de \((E)\) avec les conditions initiales \(g(0)=0\) et \(g'(0)=1\) est impaire. En déduire qu’il existe une base de l’espace des solutions de \((E)\) constituée d’une fonction paire et d’une fonction impaire.
On suppose qu’il existe une base de l’espace des solutions de \((E)\) constituée d’une fonction paire et d’une fonction impaire. Montrer que \(a\) est impaire et \(b\) paire.
[oraux/ex2840] centrale 2004 Soient \(r\) et \(q\) deux fonctions continues sur \(I=[a,b]\), telles que \(\forall x\in I\), \(r(x)\geqslant q(x)\). On considère les équations différentielles : \[\begin{array}{lcc}y''+qy=0&&(E_1)\\z''+rz=0&&(E_2)\end{array}\]
[oraux/ex2840]
Soient \(x_0\) et \(x_1\) deux zéros consécutifs de \(y\), solution non nulle de \((E_1)\). Peut-on avoir \(y'(x_0)=0\) ou \(y'(x_1)=0\) ? Que dire des signes de \(y'(x_0)\) et \(y'(x_1)\) ?
Soit \(z\) une solution de \((E_2)\). On note \(w(x)=y(x)z'(x)-y'(x)z(x)\). Calculer \(w'(x)\) et exprimer \(w(x_1)-w(x_0)\).
Montrer que pour tout \(z\) solution de \((E_2)\), \(z\) s’annule entre \(x_0\) et \(x_1\).
Montrer que toute solution de \((E_1)\) est proportionnelle à \(y\) ou alors qu’elle s’annule entre \(x_0\) et \(x_1\).
Application : Soit \(y\) une solution de l’équation \(y''+e^{x^2}y=0\). La fonction \(y\) s’annule-t-elle ?
Le clic droit sur un énoncé ou sur une référence d'exercice permet d'examiner cet exercice sur une page dédiée