[planches/ex9268] ens saclay, ens rennes MP 2023 On considère l’équation différentielle \((D_{\lambda})\) : \(y'' + (\lambda-r)y =0\) avec \(\lambda \in \mathbb{R}\), \(r \in\mathscr{C}^{\infty}(I, \mathbb{R})\), où \(I\) est un intervalle contenant \([0, 1]\).
[planches/ex9268]
On considère \(E_{\lambda}\) l’espaces des solutions \(y\) de \((D_{\lambda})\) telles que \(y(0) = 0\), \(y(1) = 0\).
Quelles sont les dimensions possibles de \(E_{\lambda}\) ?
Caractériser le cas \(\mathop{\mathchoice{\hbox{dim}}{\hbox{dim}}{\mathrm{dim}}{\mathrm{dim}}}\nolimits(E_{\lambda}) = 1\). (On souhaite une condition portant sur \(y_{\lambda}\), solution du problème de Cauchy \((D_{\lambda})\), \(y_{\lambda}(0) = 0\), \(y_{\lambda}'(0) = 1\).)
Montrer que, à \(r\) fixé, les \(E_{\lambda}\) sont orthogonaux pour le produit scalaire \(\langle f, g \rangle = \displaystyle\int_{0}^{1} fg\).
On note \(N_\lambda\) le nombre de zéros de \(y_{\lambda}\) sur \([0, 1]\). Pourquoi est-il fini ?
Calculer \(N_{\lambda}\) dans le cas \(r = 0\), \(\lambda > 0\).
Dans le cas général, étudier le comportement de \(N_{\lambda}\).
[oraux/ex3174] centrale MP 2011 (avec Maple)
[oraux/ex3174]
Maple
Soit \(f\) une fonction continue de \(\mathbf{R}^2\) dans \(\mathbf{R}\). On suppose qu’il existe \(L>0\) tel que : \(\forall(x,y,t)\in\mathbf{R}^3\), \(|f(t,x)-f(t,y)|\leqslant L|x-y|\). On fixe \(a\), \(b\) dans \(\mathbf{R}\). Si \(x\) est une fonction continue de \(\mathbf{R}\) dans \(\mathbf{R}\), on note \(T(x)\) la fonction définie par : \[\forall t\in\mathbf{R},\quad T(x)(t)=a+bt+\int_0^t(t-s)f(s,x(s))\,ds.\]
Vérifier que \(T(x)\) est de classe \(C^1\) sur \(\mathbf{R}\).
On suppose \(f(t,x)=(2\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits t-2)x\). On prend pour \(y\) la fonction nulle. Tracer, pour \(8\leqslant n\leqslant 12\), le graphe de \(T^n(y)\) sur \([-6,6]\).
Montrer que pour toute \(x\in\mathscr{C}^0(\mathbf{R},\mathbf{R})\) la suite \((T^n(x))\) converge uniformément sur tout segment de \(\mathbf{R}\) vers une fonction \(y\) telle que \(y(0)=a\), \(y'(0)=b\), \(\forall t\in\mathbf{R}\), \(y''(t)=f(t,y(t))\).
[planches/ex7169] centrale MP 2021 Soit \(f\in\mathscr{C}^1(\left[1,+\infty\right[,\mathbf{R}_+^*)\) telle que \(\mathop{\mathchoice{\hbox{lim}}{\hbox{lim}}{\mathrm{lim}}{\mathrm{lim}}}\limits_{x\rightarrow+\infty}f'(x)=\alpha>0\).
[planches/ex7169]
Soit \(u\in\mathscr{C}^2(\left[1,+\infty\right[,\mathbf{R})\) bornée et solution de l’équation différentielle \(u''-\displaystyle{f'\over f}u'-{u\over f^2}=0\). On pose \(h=\displaystyle{u'\over f}\).
Montrer que \(u'(x)=O(1/x)\) lorsque \(x\rightarrow+\infty\).
Montrer que \(u^2\) admet une limite \(\ell\) en \(+\infty\).
Montrer que \(\ell=0\).
[oraux/ex2799] mines 2003
[oraux/ex2799]
Soit \((E)\) : \(y''+y=f(x)\) où \(f\in\mathscr{C}^0(\mathbf{R}_+,\mathbf{R})\). Montrer que : \[g(x)=\displaystyle\int_0^xf(t)\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(x-t)\,dt\] est une solution de \((E)\) vérifiant \(y(0)=0\) et \(y'(0)=0\).
Soit \(\sigma>0\). On cherche une solution du problème de Cauchy \((E')\) : \(y''+y=\sigma y^2\), \(y(0)=1/2\) et \(y'(0)=0\). Soit \(b>0\) tel que \(\sigma b<1/2\). Soit \((y_n)\) la suite définie par : \[y_0(x)={1\over2}\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits x\quad\hbox{et}\quad\forall n\geqslant 1,\quad y_n''+y_n=\sigma y_{n-1},\ y_n(0)=y_n'(0)=0.\]
Exprimer \(y_n\) à l’aide de \(y_{n-1}\) et d’une intégrale.
Montrer : \(|y_n(x)-y_{n-1}(x)|\leqslant\displaystyle{1\over2}\,{(\sigma x)^n\over n\,!}\).
Montrer que \((E')\) a une unique solution sur \([0,b]\).
[planches/ex0917] ens paris, ens lyon, ens cachan MP 2013 Soient \(\eta\) et \(\varphi\) deux fonctions de classe \(\mathscr{C}^\infty\) et 1-périodiques de \(\mathbf{R}\) dans \(\mathbf{R}\), avec \(\eta\) à valeurs dans \(\mathbf{R}_+^*\) et \((E)\) l’équation différentielle : \(y''-\eta y=\varphi\).
[planches/ex0917]
Montrer que \((E)\) admet au plus une solution 1-périodique.
On suppose \(\eta\) constante. Montrer que \((E)\) possède une solution 1-périodique.
Établir l’existence de \(\alpha>0\) tel que, pour \(\lambda\in\mathbf{R}\) vérifiant \(0<|\lambda|<\alpha\), l’équation \(u''-\lambda\eta u=\varphi\) admette une solution 1-périodique.
Indication : On écrit \(\varphi=\lambda\varphi_1+\varphi_0\) avec \(\varphi_1\) constante et \(\displaystyle\int_0^1\varphi_0=0\). On cherche alors la solution \(u\) sous la forme \(\displaystyle\sum\limits_{n=0}^{+\infty}\lambda^n(u_n+c_n)\) où \(c_n\) est constante de \(u_n\) est une fonction 1-périodique vérifiant \(u_n(0)=0\).
[planches/ex1597] ens PSI 2017 Si \(x\) est un nombre réel, on note \(\{x\}=x-\lfloor x\rfloor\) la partie fractionnaire de \(x\). Soient \(\theta\in\mathbf{R}\setminus\mathbf{Q}\) et \(f:\mathbf{N}\rightarrow\left[0,1\right[\), \(n\mapsto\{n\theta\}\).
[planches/ex1597]
Montrer que \(f\) est injective.
Montrer que : \(\forall\varepsilon>0\), \(\exists(m,n)\in\mathbf{N}^2\), \(m\neq n\) et \(0<f(m)-f(n)<\varepsilon\).
En déduire que \(\{x\in\mathbf{R},\ \exists(a,b)\in\mathbf{Z}^2,\ x=a+b\theta\}\) est dense dans \(\mathbf{R}\).
On considère l’équation différentielle \((E)\) : \(y''+2y'+2y=f\) où \(f\in\mathscr{C}^0(\mathbf{R},\mathbf{R})\) est non constante. On suppose que \((E)\) possède deux solutions périodiques \(y_1\) et \(y_2\) de périodes respectives \(T_1\) et \(T_2\). On se propose de montrer que \(y_1=y_2\).
Montrer que \(T_1/T_2\) est un nombre rationnel.
Montrer que la fonction \(y_2-y_1\) est bornée.
Montrer que \(y_2=y_1\).
[oraux/ex2784] mines 2003 Soit \(\lambda>0\). On considère l’équation différentielle : \[(E)\qquad y''=-y+\lambda y'(1-y^2).\] On note \(\varphi:I\rightarrow\mathbf{R}\) une solution maximale de \((E)\). On pose \(g=\varphi^2+(\varphi')^2\).
[oraux/ex2784]
Montrer que \(g'\leqslant 2\lambda g\).
Soit \(a\in I\).
Soit \(x\in\left[a,+\infty\right[\cap I\). Montrer que \(g(x)\leqslant g(a)e^{2\lambda(x-a)}\).
Montrer que \(I\supset\left[a,+\infty\right[\).
[concours/ex3119] polytechnique P 1993
[concours/ex3119]
Soit \(g\), \(k:[a,b]\rightarrow\mathbf{R}\) avec \(g\) continue et \(k\) de classe \(C^1\) ne s’annulant pas sur \([a,b]\) et \[(E)\quad(ky')'+gy=0.\]
Montrer que l’ensemble des zéros d’une solution non nulle de \((E)\) est fini.
Soit \(y_1\) et \(y_2\) deux solutions indépendantes de \((E)\). Montrer que si \(x_1\) et \(x_2>x_1\) sont deux zéros de \(y_1\), alors \(y_2\) s’annule sur \(\left]x_1,x_2\right[\).
Soit \(g_1\), \(g_2:[a,b]\rightarrow\mathbf{R}\) continues telles que \(g_1<g_2\), \[(E_j)\quad(ky')'+g_jy=0\quad(j=1,2)\] et \(u\) une solution non nulle de \(E_1\) s’annulant en \(x_1\) et \(x_2>x_1\). Montrer que toute solution de \((E_2)\) s’annule sur \(\left]x_1,x_2\right[\).
[planches/ex2136] mines MP 2017 Soient \(a\) et \(b\) continues et 1-périodiques, et soit \(y\) solution de \(y''+ay'+by=0\) telle que \(y(0)=y(1)=0\). Montrer que \(y\) s’annule en tout \(k\in\mathbf{Z}\).
[planches/ex2136]
Dans la page dédiée à l'examen d'un exercice, vous pouvez choisir de déployer toute sa famille par défaut ou non