[oraux/ex3187] centrale PC 2011 (avec Maple)
[oraux/ex3187]
Maple
Soit, pour \(a\in\mathbf{R}\), \((E_a)\) : \((x-1)y''(x)-y'(x)+4a(x-1)^3y(x)=0\).
Donner une condition nécessaire et suffisante sur \(a\) pour qu’il existe une solution non nulle de \((E_a)\) s’annulant en 0 et en 1. On note \((a_k)_{k\geqslant 0}\) la suite strictement croissante des réels ainsi trouvés.
Soit, pour \(k\in\mathbf{N}\), \(\varphi_k:x\mapsto\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(\sqrt{a_k}x(x-2))\).
Si \((f,g)\in\mathscr{C}^0([0,1],\mathbf{R})^2\), on pose \(\langle f,g\rangle=\displaystyle\int_0^12(1-x)f(x)g(x)\,dx\). Montrer que cette application définit un produit scalaire sur \(\mathscr{C}^0([0,1],\mathbf{R})\). Calculer \(\langle\varphi_k,\varphi_j\rangle\) pour \((j,k)\in\mathbf{N}^2\).
Soit \((b_n)_{n\geqslant 0}\in\mathbf{R}^\mathbf{N}\). On suppose que la série de terme général \(b_n\) est absolument convergente. Soit \(F:x\mapsto\displaystyle\sum\limits_{k=0}^{+\infty}b_k\varphi_k(x)\). Montrer que \(F\) est définie et continue sur \(\mathbf{R}\). Exprimer les \(b_k\) à l’aide d’une intégrale faisant intervenir \(F\) et les \((\varphi_n)_{n\geqslant 0}\).
[planches/ex1079] ens paris, ens lyon, ens cachan, ens rennes MP 2016 Soient \(b\in\mathbf{R}_+^*\) et \(f\) une fonction continue définie sur \(\left[1,+\infty\right[\) telle que \(f(r)=O(r^{-b-2})\).
[planches/ex1079]
Soit \(u\) de classe \(\mathscr{C}^2\) sur \(\left[1,+\infty\right[\) bornée telle que \(-u''-\displaystyle{u'\over r}+{u\over r^2}=f\). Montrer que \(u\) tend vers 0 en \(+\infty\) et préciser la vitesse de convergence.
Soient \(j>0\) de classe \(\mathscr{C}^1\) sur \(\left[1,+\infty\right[\) telle que \(j'\) tend vers 1 en \(+\infty\) et \(u\) de classe \(\mathscr{C}^2\) sur \(\left[1,+\infty\right[\) bornée telle que \(-u''-\displaystyle{j'\over j}u'+{u\over j^2}=f\). Montrer que \(u\) tend vers 0 en \(+\infty\).
[concours/ex1374] ens cachan MP 1998 Soient \(A\) et \(B\) dans \(\mathbf{R}^2\) euclidien, et \[E=\{u\in\mathscr{C}^1([0,1],\mathbf{R}^2)\mid u(0)=A,\ u(1)=B\}.\] Soit \(n\) une application de \(\mathbf{R}^2\) dans \(\mathbf{R}_+^*\), de classe \(C^2\). Pour \(u\in E\), on pose \(F(u)=\displaystyle\int_0^1n(u(t))\|u'(t)\|^2\,dt\). On suppose qu’il existe \(u_0\in E\) tel que \(F(u_0)=\mathop{\mathchoice{\hbox{min}}{\hbox{min}}{\mathrm{min}}{\mathrm{min}}}\limits_{u\in E}F(u)\). Montrer que \(u_0\) est de classe \(C^2\) et trouver une équation différentielle vérifiée par \(u_0\).
[concours/ex1374]
[oraux/ex2894] centrale MP 2005 Soit \(q\) une fonction continue et positive définie sur \(\mathbf{R}\). On note \((E)\) l’équation différentielle : \(y''-qy=0\).
[oraux/ex2894]
Montrer qu’une solution non nulle de \((E)\) ne s’annule qu’au plus une fois.
Désormais \(q(t)=e^t\). Montrer que les solutions de \((E)\) sont développables en série entière.
Donner l’allure des solutions \(f\) et \(g\) de \(y''-e^ty=0\) vérifiant les conditions initiales \(f(0)=1\), \(f'(0)=0\), \(g(0)=0\) et \(g'(0)=1\).
[examen/ex1383] polytechnique MP 2024 Pour \(f\in\mathscr{C}^\infty(\mathbf{R},\mathbf{R})\), on pose \(H(f):x\mapsto x^2f(x)-f''(x)\), \(A_-(f):x\mapsto -f'(x)+xf(x)\) et \(A_+(f):x\mapsto f'(x)+xf(x)\).
[examen/ex1383]
Déterminer \(A_-\circ A_+\) et \(A_+\circ A_-\).
Montrer qu’il existe une unique \(\varphi_0\in\mathscr{C}^\infty(\mathbf{R},\mathbf{R})\) de carré intégrable, telle que \(H(\varphi_0)=\varphi_0\) et \(\varphi_0(0)=1\).
On pose, pour \(n\in\mathbf{N}^*\), \(\varphi_n=A_-^n(\varphi_0)\).
Montrer que, pour tout \(n\in\mathbf{N}\), \(H(\varphi_n)=(2n+1)\varphi_n\).
Montrer que \(\varphi_n\) s’écrit sous la forme \(P_n\times\varphi_0\) avec \(P_n\) polynomiale.
[examen/ex1382] polytechnique MP 2024
[examen/ex1382]
Soit \(f\in \mathscr{C}^1([0,\pi], \mathbf{R})\) telle que \(f(0)=f(\pi)=0\). Montrer que \(\displaystyle\int_0^{\pi}f^2\leqslant\frac{\pi^2}{8}\int_0^{\pi}(f')^2\).
Soit \(f\), \(q\in \mathscr{C}^0([0,\pi], \mathbf{R})\) telle que \(\forall x\in[0,\pi]\), \(q(x)<\displaystyle\frac{8}{\pi^2}\). Soient \(a\), \(b\in \mathbf{R}\). Montrer qu’il existe une unique fonction \(y\in \mathscr{C}^2([0,\pi], \mathbf{R})\) telle que \(y''+qy=f\), \(y(0)=a\), \(y(\pi)=b\).
[oraux/ex3174] centrale MP 2011 (avec Maple)
[oraux/ex3174]
Soit \(f\) une fonction continue de \(\mathbf{R}^2\) dans \(\mathbf{R}\). On suppose qu’il existe \(L>0\) tel que : \(\forall(x,y,t)\in\mathbf{R}^3\), \(|f(t,x)-f(t,y)|\leqslant L|x-y|\). On fixe \(a\), \(b\) dans \(\mathbf{R}\). Si \(x\) est une fonction continue de \(\mathbf{R}\) dans \(\mathbf{R}\), on note \(T(x)\) la fonction définie par : \[\forall t\in\mathbf{R},\quad T(x)(t)=a+bt+\int_0^t(t-s)f(s,x(s))\,ds.\]
Vérifier que \(T(x)\) est de classe \(C^1\) sur \(\mathbf{R}\).
On suppose \(f(t,x)=(2\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits t-2)x\). On prend pour \(y\) la fonction nulle. Tracer, pour \(8\leqslant n\leqslant 12\), le graphe de \(T^n(y)\) sur \([-6,6]\).
Montrer que pour toute \(x\in\mathscr{C}^0(\mathbf{R},\mathbf{R})\) la suite \((T^n(x))\) converge uniformément sur tout segment de \(\mathbf{R}\) vers une fonction \(y\) telle que \(y(0)=a\), \(y'(0)=b\), \(\forall t\in\mathbf{R}\), \(y''(t)=f(t,y(t))\).
[oraux/ex3140] polytechnique MP 2011 Soient \(q\in\mathscr{C}^0(\mathbf{R},\mathbf{R}_-^*)\), \((E)\) l’équation différentielle \(y''+q(t)y=0\) et \((\varphi,\psi)\) le couple formé des solutions de \((E)\) sur \(\mathbf{R}\) vérifiant \((\varphi(0)=1,\ \varphi'(0)=0)\) et \((\psi(0)=0,\ \psi'(0)=1)\). Montrer que : \(\forall x\in\mathbf{R}_+\), \(\varphi(x)\geqslant 1\) et \(\psi(x)\geqslant x\).
[oraux/ex3140]
[concours/ex4044] polytechnique pox P 1990 Soit \(f(x)=\displaystyle{\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits x\over x}\).
[concours/ex4044]
Trouver une équation différentielle linéaire, d’ordre \(2\), à coefficients polynomiaux, satisfaite par \(f\).
Résoudre cette équation.
[concours/ex4170] mines M 1990 Soit \(f\) une solution sur \(\mathbf{R}_+\) de : \[y''+e^{-t^2}y=\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits t.\] On suppose \(f\) bornée et \(\displaystyle\int_0^{+\infty}f^2\) convergente. Montrer que \(f'\) est bornée, puis que \(\mathop{\mathchoice{\hbox{lim}}{\hbox{lim}}{\mathrm{lim}}{\mathrm{lim}}}\limits_{t\rightarrow+\infty}f(t)=0\).
[concours/ex4170]
Vous pouvez paramétrer ce qui s'affiche lorsque vous survolez une référence d'exercice dans un tableau, voire ne rien afficher