[oraux/ex3146] polytechnique, ens cachan PSI 2011
[oraux/ex3146]
Donner un exemple de fonction continue, non identiquement nulle au voisinage de 0 et telle que 0 n’est pas un zéro isolé.
Soient \(f:\mathbf{R}\rightarrow\mathbf{R}\) dérivable et \(a\in\mathbf{R}\). On suppose que \(f(a)=0\) et que \(a\) n’est pas un zéro isolé de \(f\). Montrer que \(f'(a)=0\).
Soient \((a,b)\in\mathbf{R}^2\) avec \(a<b\), \(f:[a,b]\rightarrow\mathbf{R}\) dérivable telle que \(f(a)=f(b)=0\) et \(\forall x\in\left]a,b\right[\), \(f(x)\geqslant 0\). Montrer : \(f'(a)f'(b)\leqslant 0\).
Soient \(I\) un intervalle de \(\mathbf{R}\), \(p\) et \(q\) dans \(\mathscr{C}^0(I,\mathbf{R})\) et \((E)\) l’équation différentielle : \(y''+py'+qy=0\).
Soit \(f\) une solution non identiquement nulle de \((E)\). Montrer que les zéros de \(f\) sont isolés.
Soient \(f\) et \(g\) deux solutions de \((E)\) et \(t_0\in I\). On suppose qu’il existe \(c\in\mathbf{R}\) tel que \(f(t_0)=cg(t_0)\) et \(f'(t_0)=cg'(t_0)\). Montrer : \(f=cg\).
Soient \(f\) et \(g\) deux solutions indépendantes de \((E)\). Montrer que le wronskien \(W\) de \(f\) et de \(g\) ne s’annule pas. Exprimer \(W(t)\) en fonction de \(W(t_0)\). Montrer que, entre deux zéros consécutifs de \(f\), la fonction \(g\) s’annule.
[planches/ex1005] polytechnique, espci PC 2014 Soit \(f\in\mathscr{C}^2(\mathbf{R},\mathbf{R})\), \(g\in\mathscr{C}^1(\mathbf{R},\mathbf{R}_+)\) telles que : \(\forall x\in\mathbf{R}\), \(f''(x)+f(x)=-xg(x)f'(x)\). Montrer que \(f\) est bornée.
[planches/ex1005]
[oraux/ex4963] ens PC 2012 Soient \((E)\) : \(y''+(1+e^{-t}) y=0\) et \((F)\) : \(y''+y=0\). Soient \(f\) une solution non nulle de \((E)\) et \(g\) une solution non nulle de \((F)\).
[oraux/ex4963]
Montrer qu’entre deux zéros de \(g\) il y a au moins un zéro de \(f\).
Montrer que \(f\) possède une infinité de zéros sur \(\mathbf{R}^+\). On note \((x_n)_{n\geqslant 0}\) la suite ordonnée des zéros de \(f\) sur \(\mathbf{R}^+\).
Montrer que \(x_{n+1}-x_n\rightarrow \pi\).
Donner un équivalent de \(x_n\) quand \(n\rightarrow +\infty\).
[oraux/ex3170] centrale MP 2011 (avec Maple)
[oraux/ex3170]
Maple
Soit \((E_\lambda)\) l’équation \(-y''+x^2y=\lambda y\).
Tracer les solutions pour \(\lambda\in\{1,2\}\) pour chacune des conditions initiales suivantes : \(\{y(0)=0,\ y'(0)=1\}\) et \(\{y(0)=1,\ y'(0)=0\}\).
On étude \((E_1)\). Chercher les valeurs de \(\sigma\) telles que \(t\mapsto e^{at^2}\) soit solution. En déduire toutes les solutions de \((E_1)\) à l’aide de \(\varphi:x\mapsto\displaystyle\int_0^xe^{t^2}\,dt\). Chercher avec Maple un équivalent de \(\varphi\) en \(+\infty\). Quelles sont les solutions bornées de \((E_1)\) ?
Soit \(y\) une solution de \((E_\lambda)\). Déterminer une équation vérifiée par \(u:x\mapsto y(x)e^{x^2/2}\). Montrer que ces fonctions \(u\) sont développables en série entière, et qu’il en est de même de toutes les solutions de \((E_\lambda)\).
[concours/ex4170] mines M 1990 Soit \(f\) une solution sur \(\mathbf{R}_+\) de : \[y''+e^{-t^2}y=\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits t.\] On suppose \(f\) bornée et \(\displaystyle\int_0^{+\infty}f^2\) convergente. Montrer que \(f'\) est bornée, puis que \(\mathop{\mathchoice{\hbox{lim}}{\hbox{lim}}{\mathrm{lim}}{\mathrm{lim}}}\limits_{t\rightarrow+\infty}f(t)=0\).
[concours/ex4170]
[concours/ex4044] polytechnique pox P 1990 Soit \(f(x)=\displaystyle{\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits x\over x}\).
[concours/ex4044]
Trouver une équation différentielle linéaire, d’ordre \(2\), à coefficients polynomiaux, satisfaite par \(f\).
Résoudre cette équation.
[concours/ex3550] polytechnique M 1992 Soit \(a\) et \(b\) deux fonctions continues de \(\mathbf{R}_+\) dans \(\mathbf{R}\). On suppose que les intégrales \(\displaystyle\int_0^{+\infty}ta(t)\,dt\) et \(\displaystyle\int_0^{+\infty}b(t)\,dt\) convergent absolument. On considère l’équation \((E)\) : \(x''+a(t)x=b(t)\). Soit \(x\) une solution de \((E)\). Montrer que \(x\) a une limite en \(+\infty\).
[concours/ex3550]
[planches/ex0956] centrale MP 2013 Soit \(q\in\mathscr{C}^1(\mathbf{R},\mathbf{C})\) \(\pi\)-périodique. Pour \(\omega\in\mathbf{R}\), on considère l’équation différentielle \((E_\omega)\) : \(x''+(\omega^2-q)x=0\) et on note \(S(\omega)\) l’ensemble de ses solutions.
[planches/ex0956]
Établir l’existence de \(x_1\) et \(x_2\) dans \(S(\omega)\) telles que : \[(x_1(0),x'_1(0))=(1,0)\quad\hbox{et}\quad(x_2(0),x'_2(0))=(0,1).\] Montrer que \((x_1,x_2)\) est libre.
Calculer le wronskien de \((x_1,x_2)\).
Soit \(T\) qui à \(x\in S(\omega)\) associe \(T(x):t\mapsto x(t+\pi)\). Montrer que \(T\) est un automorphisme de \(S(\omega)\). Donner la matrice de \(T\) dans la base \((x_1,x_2)\).
On pose \(\Delta=\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits(T)/2\). Montrer que \(\chi_T=X^2-2\Delta X+1\).
Si \(|\Delta|>1\), montrer que \((E_\omega)\) possède des solutions non bornées. Si \(|\Delta|<1\), montrer que les solutions de \((E_\omega)\) sont bornées.
Montrer que : \[\begin{aligned} x_1(t)&=&\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits(\omega t)+\int_0^tx_1(u)q(u)\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(\omega(t-u))\,du,\cr x_2(t)&=&{\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(\omega t)\over t}+\int_0^tx_2(u)q(u)\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(\omega(t-u))\,du. \end{aligned}\] On fait désormais varier \(\omega\).
Montrer que, lorsque \(\omega\rightarrow+\infty\), \(\Delta_\omega=\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits(\omega\pi)+O(1/\omega)\).
On appelle intervalle de divergence tout intervalle \(I\) de \(\mathbf{R}\) tel que : \(\forall\omega\in I\), \(|\Delta_\omega|>1\).
Soit \(\varepsilon>0\). Établir l’existence de \(X\in\mathbf{R}_+\) tel que, pour tout intervalle de divergence \(I\subset\left[X,+\infty\right[\), il existe un entier \(n\) tel que \(I\subset[n-\varepsilon,n+\varepsilon]\).
[oraux/ex4930] ens lyon MP 2012 On note \(E\) l’ensemble des \(f\in{\cal C}^1([-1,1],\mathbf{R})\) vérifiant \(f(-1)=-1\) et \(f(1)=1\). On considère \(J : f \in E \mapsto \displaystyle\int_{-1}^1 \left(x\, f'(x)\right)^2\,dx\). La fonction \(J\) possède-t-elle un minimum ?
[oraux/ex4930]
[oraux/ex3136] ens PC 2011 Soit \(g\in\mathscr{C}^\infty(\mathbf{R}_+,\mathbf{R})\). On suppose qu’il existe \((\alpha,\beta)\in(\mathbf{R}_+^*)^2\) tel que : \(\forall x\in\mathbf{R}_+\), \(|g(x)|\leqslant\alpha e^{-\beta x}\). Montrer que l’équation différentielle \(u''-(1+g)u=0\) possède une solution non nulle ayant pour limite 0 en \(+\infty\).
[oraux/ex3136]
Indication : Considérer une suite de fonctions \((u_n)_{n\geqslant 0}\) telle que : \(\forall n\in\mathbf{N}\), \(u_{n+1}''-u_{n+1}=gu_n\).
Sur les pages de résultats et selon les options d'affichage choisies, vous pouvez déployer les familles des exercices affichés