[planches/ex0957] centrale MP 2013 Soient \(q\in\mathscr{C}^0(\left[a,+\infty\right[,\mathbf{R}_+)\) et \((E)\) l’équation différentielle \(y''=q(x)y\).
[planches/ex0957]
Soit \(f\) une solution de \((E)\) telle que \(f(a)>0\) et \(f'(a)>0\). Montrer que \(f\) et \(f'\) sont strictement positives et que \(f\) tend vers \(+\infty\) en \(+\infty\).
Soient \(u\) et \(v\) les solutions de \((E)\) telles que \(u(a)=1\), \(u'(a)=0\), \(v(a)=0\), \(v'(a)=1\). Calculer \(u'v-uv'\). Montrer que, sur \(\left]a,+\infty\right[\), \(u/v\) et \(u'/v'\) sont monotones de monotonies opposées. Montrer que \(u/v\) et \(u'/v'\) tendent en \(+\infty\) vers la même limite réelle.
Montrer qu’il existe une unique solution \(g\) de \((E)\), strictement positive, telle que \(g(a)=1\) et telle que \(g\) décroisse sur \(\left[a,+\infty\right[\).
Déterminer \(g\) lorsque \(q(x)=\displaystyle{1\over x^4}\) sur \(\left[1,+\infty\right[\). On pourra poser \(y(x)=xz(1/x)\).
[planches/ex1005] polytechnique, espci PC 2014 Soit \(f\in\mathscr{C}^2(\mathbf{R},\mathbf{R})\), \(g\in\mathscr{C}^1(\mathbf{R},\mathbf{R}_+)\) telles que : \(\forall x\in\mathbf{R}\), \(f''(x)+f(x)=-xg(x)f'(x)\). Montrer que \(f\) est bornée.
[planches/ex1005]
[concours/ex4044] polytechnique pox P 1990 Soit \(f(x)=\displaystyle{\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits x\over x}\).
[concours/ex4044]
Trouver une équation différentielle linéaire, d’ordre \(2\), à coefficients polynomiaux, satisfaite par \(f\).
Résoudre cette équation.
[planches/ex1080] ens cachan, ens rennes MP 2016 Soient \(f\) dans \(\mathscr{C}^0([0,1],\mathbf{R}_-^*)\) et \((E)\) l’équation différentielle \(x''+f(t)x=0\) sur \([0,1]\).
[planches/ex1080]
Décrire la structure de l’ensemble des solutions de \((E)\), rappeler le théorème de Cauchy linéaire, mettre le système différentiel associé à \((E)\) sous forme matricielle.
Montrer que si \(x\) est solution de \((E)\) et vérifie \(x(0)=x(1)=0\) alors \(x=0\).
Montrer qu’il existe \(\varepsilon>0\) tel que pour toute solution de \((E)\), on ait : \[\varepsilon^2\int_0^1x(t)^2\,dt\leqslant\varepsilon\int_0^1x'(t)^2\,dt\leqslant\int_0^1(1-t)x(t)^2\,dt.\]
[planches/ex0956] centrale MP 2013 Soit \(q\in\mathscr{C}^1(\mathbf{R},\mathbf{C})\) \(\pi\)-périodique. Pour \(\omega\in\mathbf{R}\), on considère l’équation différentielle \((E_\omega)\) : \(x''+(\omega^2-q)x=0\) et on note \(S(\omega)\) l’ensemble de ses solutions.
[planches/ex0956]
Établir l’existence de \(x_1\) et \(x_2\) dans \(S(\omega)\) telles que : \[(x_1(0),x'_1(0))=(1,0)\quad\hbox{et}\quad(x_2(0),x'_2(0))=(0,1).\] Montrer que \((x_1,x_2)\) est libre.
Calculer le wronskien de \((x_1,x_2)\).
Soit \(T\) qui à \(x\in S(\omega)\) associe \(T(x):t\mapsto x(t+\pi)\). Montrer que \(T\) est un automorphisme de \(S(\omega)\). Donner la matrice de \(T\) dans la base \((x_1,x_2)\).
On pose \(\Delta=\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits(T)/2\). Montrer que \(\chi_T=X^2-2\Delta X+1\).
Si \(|\Delta|>1\), montrer que \((E_\omega)\) possède des solutions non bornées. Si \(|\Delta|<1\), montrer que les solutions de \((E_\omega)\) sont bornées.
Montrer que : \[\begin{aligned} x_1(t)&=&\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits(\omega t)+\int_0^tx_1(u)q(u)\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(\omega(t-u))\,du,\cr x_2(t)&=&{\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(\omega t)\over t}+\int_0^tx_2(u)q(u)\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(\omega(t-u))\,du. \end{aligned}\] On fait désormais varier \(\omega\).
Montrer que, lorsque \(\omega\rightarrow+\infty\), \(\Delta_\omega=\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits(\omega\pi)+O(1/\omega)\).
On appelle intervalle de divergence tout intervalle \(I\) de \(\mathbf{R}\) tel que : \(\forall\omega\in I\), \(|\Delta_\omega|>1\).
Soit \(\varepsilon>0\). Établir l’existence de \(X\in\mathbf{R}_+\) tel que, pour tout intervalle de divergence \(I\subset\left[X,+\infty\right[\), il existe un entier \(n\) tel que \(I\subset[n-\varepsilon,n+\varepsilon]\).
[planches/ex1100] mines MP 2016 Soient \(a\) et \(b\) deux fonctions continues de \(\mathbf{R}\) dans \(\mathbf{R}\). Que peut-on dire de la dimension de l’espace des solutions sur \(\mathbf{R}\) de l’équation différentielle \[xy''+a(x)y'+b(x)y=0\ ?\]
[planches/ex1100]
[oraux/ex4963] ens PC 2012 Soient \((E)\) : \(y''+(1+e^{-t}) y=0\) et \((F)\) : \(y''+y=0\). Soient \(f\) une solution non nulle de \((E)\) et \(g\) une solution non nulle de \((F)\).
[oraux/ex4963]
Montrer qu’entre deux zéros de \(g\) il y a au moins un zéro de \(f\).
Montrer que \(f\) possède une infinité de zéros sur \(\mathbf{R}^+\). On note \((x_n)_{n\geqslant 0}\) la suite ordonnée des zéros de \(f\) sur \(\mathbf{R}^+\).
Montrer que \(x_{n+1}-x_n\rightarrow \pi\).
Donner un équivalent de \(x_n\) quand \(n\rightarrow +\infty\).
[examen/ex1382] polytechnique MP 2024
[examen/ex1382]
Soit \(f\in \mathscr{C}^1([0,\pi], \mathbf{R})\) telle que \(f(0)=f(\pi)=0\). Montrer que \(\displaystyle\int_0^{\pi}f^2\leqslant\frac{\pi^2}{8}\int_0^{\pi}(f')^2\).
Soit \(f\), \(q\in \mathscr{C}^0([0,\pi], \mathbf{R})\) telle que \(\forall x\in[0,\pi]\), \(q(x)<\displaystyle\frac{8}{\pi^2}\). Soient \(a\), \(b\in \mathbf{R}\). Montrer qu’il existe une unique fonction \(y\in \mathscr{C}^2([0,\pi], \mathbf{R})\) telle que \(y''+qy=f\), \(y(0)=a\), \(y(\pi)=b\).
[concours/ex3343] centrale M 1993 On considère l’équation différentielle \((E)\) : \[y''+y'+p(x)y=0.\] Trouver \(p(x)\) pour que \((E)\) admette deux solutions \(y_1\), \(\mu y_2\) non identiquement nulles et telles que \(y_2=y_1^2\). Résoudre alors \((E)\).
[concours/ex3343]
[oraux/ex2986] centrale MP 2008 Soit \(q:\mathbf{R}\rightarrow\mathbf{R}\) continue, \(2\pi\)-périodique, de valeur moyenne nulle. Pour \(n\in\mathbf{N}^*\), soit \(y_n:\mathbf{R}\rightarrow\mathbf{R}\) la solution du problème de Cauchy : \(y''+(1-q(nt))y=0\), \(y(0)=1\) et \(y'(0)=0\). Soit \(X_n:t\mapsto(y_n(t),y_n'(t))\). On munit \(\mathbf{R}^2\) de son produit scalaire canonique.
[oraux/ex2986]
Montrer que, \(\forall t\in\mathbf{R}\) : \(\langle X_n(t),X_n'(t)\rangle\leqslant\displaystyle{1\over2}|q_n(t)|\times\|X_n(t)\|^2\).
Soit \(T>0\). Montrer que \(y_n\) et \(y_n'\) sont bornées sur \([0,T]\) par une constante indépendante de \(n\).
Montrer que \((y_n)\) converge uniformément sur \([0,T]\).
Vous pouvez limiter le nombre de résultats d'une requête, pour en accélérer l'affichage