[planches/ex9503] polytechnique MP 2023 Soient \(q_1\), \(q_2\) deux fonctions continues de \(\mathbf{R}^+\) dans \(\mathbf{R}\) telles que \(q_1\leqslant q_2\). On considère l’équation différentielle \((E_i)\) : \(y''+q_i(t)\, y=0\) pour \(i\in\{1,2\}\).
[planches/ex9503]
Soient \(y_1\), \(y_2\) des solutions respectives de \((E_1)\) et \((E_2)\) sur \(I\). Soient \(\alpha<\beta\) deux zéros de \(y_1\). Montrer que \(y_2\) s’annule dans \([\alpha,\beta]\).
Soient \(q:\mathbf{R}^+\rightarrow\mathbf{R}\) continue, \(m\), \(M\) deux réels strictement positifs tels que \(m\leqslant q\leqslant M\). Soient \(\alpha<\beta\) deux zéros consécutifs d’une solution non nulle \(x\) de \(y''+q(t)\,y=0\).
Montrer que les zéros de \(x\) forment une suite strictement croissante \((t_n)_{n\in\mathbf{N}}\).
Montrer que \(\displaystyle\frac{\pi}{\sqrt{M}}\leqslant t_{n+1}-t_n\leqslant\frac{\pi}{\sqrt{m}}\) pour tout \(n\in\mathbf{N}\).
[planches/ex0956] centrale MP 2013 Soit \(q\in\mathscr{C}^1(\mathbf{R},\mathbf{C})\) \(\pi\)-périodique. Pour \(\omega\in\mathbf{R}\), on considère l’équation différentielle \((E_\omega)\) : \(x''+(\omega^2-q)x=0\) et on note \(S(\omega)\) l’ensemble de ses solutions.
[planches/ex0956]
Établir l’existence de \(x_1\) et \(x_2\) dans \(S(\omega)\) telles que : \[(x_1(0),x'_1(0))=(1,0)\quad\hbox{et}\quad(x_2(0),x'_2(0))=(0,1).\] Montrer que \((x_1,x_2)\) est libre.
Calculer le wronskien de \((x_1,x_2)\).
Soit \(T\) qui à \(x\in S(\omega)\) associe \(T(x):t\mapsto x(t+\pi)\). Montrer que \(T\) est un automorphisme de \(S(\omega)\). Donner la matrice de \(T\) dans la base \((x_1,x_2)\).
On pose \(\Delta=\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits(T)/2\). Montrer que \(\chi_T=X^2-2\Delta X+1\).
Si \(|\Delta|>1\), montrer que \((E_\omega)\) possède des solutions non bornées. Si \(|\Delta|<1\), montrer que les solutions de \((E_\omega)\) sont bornées.
Montrer que : \[\begin{aligned} x_1(t)&=&\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits(\omega t)+\int_0^tx_1(u)q(u)\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(\omega(t-u))\,du,\cr x_2(t)&=&{\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(\omega t)\over t}+\int_0^tx_2(u)q(u)\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(\omega(t-u))\,du. \end{aligned}\] On fait désormais varier \(\omega\).
Montrer que, lorsque \(\omega\rightarrow+\infty\), \(\Delta_\omega=\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits(\omega\pi)+O(1/\omega)\).
On appelle intervalle de divergence tout intervalle \(I\) de \(\mathbf{R}\) tel que : \(\forall\omega\in I\), \(|\Delta_\omega|>1\).
Soit \(\varepsilon>0\). Établir l’existence de \(X\in\mathbf{R}_+\) tel que, pour tout intervalle de divergence \(I\subset\left[X,+\infty\right[\), il existe un entier \(n\) tel que \(I\subset[n-\varepsilon,n+\varepsilon]\).
[equadiff/ex0156] On considère l’équation différentielle linéaire du second ordre : \[(E)\qquad a(x)y''+b(x)y'+c(x)y=f(x),\] où \(a\), \(b\), \(c\) et \(f\) sont continues sur le même domaine de \(\mathbf{R}\), \(a\) ne s’annulant pas sur ce domaine. Soit \(y_1\) une solution particulière de l’équation homogène associée \((E')\). On effectue le changement de fonction inconnue \(y=y_1z\). Reporter cette égalité dans \((E)\) et démontrer que l’on obtient une équation du premier ordre par rapport à \(z'\). En déduire une méthode d’intégration de \((E)\).
[equadiff/ex0156]
Application : intégrer sur \(\mathscr{D}=\mathbf{R}_+^*\) l’équation : \[x^3y''+xy'-y=-e^{1/x},\] en remarquant que \(y_1:x\mapsto x\) est solution de l’équation homogène associée.
[oraux/ex3148] polytechnique, espci PC 2011 Soit \((E)\) l’équation différentielle \(y''(x)+\left(1-e^{-x^2}\right)y(x)=0\).
[oraux/ex3148]
Montrer que les solutions de \((E)\) sont bornées sur \(\mathbf{R}\).
Soit \(y\) une solution non nulle de \((E)\). Montrer que \(y\) s’annule au moins une fois sur tout intervalle de la forme \([a,a+\pi]\) avec \(a\in\mathbf{R}\).
[concours/ex5308] ens paris MP 2007
[concours/ex5308]
Soit \(x\in\mathscr{C}^2(\mathbf{R}_+,\mathbf{R})\) convexe, minorée et décroissante. Étudier la limite de \(t\mapsto tx'(t)\) lorsque \(t\rightarrow+\infty\).
Soient \(q\in\mathscr{C}^0(\mathbf{R}_+,\mathbf{R}_+)\) et \(x\in\mathscr{C}^2(\mathbf{R}_+,\mathbf{R}_+^*)\) décroissante telles que \(x''=qx\). Montrer : \(\mathop{\mathchoice{\hbox{lim}}{\hbox{lim}}{\mathrm{lim}}{\mathrm{lim}}}\limits_{+\infty}x=0\Leftrightarrow\displaystyle\int_0^{+\infty}tq(t)\,dt=+\infty\).
[examen/ex1382] polytechnique MP 2024
[examen/ex1382]
Soit \(f\in \mathscr{C}^1([0,\pi], \mathbf{R})\) telle que \(f(0)=f(\pi)=0\). Montrer que \(\displaystyle\int_0^{\pi}f^2\leqslant\frac{\pi^2}{8}\int_0^{\pi}(f')^2\).
Soit \(f\), \(q\in \mathscr{C}^0([0,\pi], \mathbf{R})\) telle que \(\forall x\in[0,\pi]\), \(q(x)<\displaystyle\frac{8}{\pi^2}\). Soient \(a\), \(b\in \mathbf{R}\). Montrer qu’il existe une unique fonction \(y\in \mathscr{C}^2([0,\pi], \mathbf{R})\) telle que \(y''+qy=f\), \(y(0)=a\), \(y(\pi)=b\).
[oraux/ex3174] centrale MP 2011 (avec Maple)
[oraux/ex3174]
Maple
Soit \(f\) une fonction continue de \(\mathbf{R}^2\) dans \(\mathbf{R}\). On suppose qu’il existe \(L>0\) tel que : \(\forall(x,y,t)\in\mathbf{R}^3\), \(|f(t,x)-f(t,y)|\leqslant L|x-y|\). On fixe \(a\), \(b\) dans \(\mathbf{R}\). Si \(x\) est une fonction continue de \(\mathbf{R}\) dans \(\mathbf{R}\), on note \(T(x)\) la fonction définie par : \[\forall t\in\mathbf{R},\quad T(x)(t)=a+bt+\int_0^t(t-s)f(s,x(s))\,ds.\]
Vérifier que \(T(x)\) est de classe \(C^1\) sur \(\mathbf{R}\).
On suppose \(f(t,x)=(2\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits t-2)x\). On prend pour \(y\) la fonction nulle. Tracer, pour \(8\leqslant n\leqslant 12\), le graphe de \(T^n(y)\) sur \([-6,6]\).
Montrer que pour toute \(x\in\mathscr{C}^0(\mathbf{R},\mathbf{R})\) la suite \((T^n(x))\) converge uniformément sur tout segment de \(\mathbf{R}\) vers une fonction \(y\) telle que \(y(0)=a\), \(y'(0)=b\), \(\forall t\in\mathbf{R}\), \(y''(t)=f(t,y(t))\).
[planches/ex9340] ens PSI 2023 Soient \(a>0\) et \(q \in\mathscr{C}^2(\left[a,+\infty\right[,\mathbf{R}^{+*})\) telle que \(\displaystyle\int_a^{+\infty} \sqrt {q(t)}\,{\rm d}t = +\infty\).
[planches/ex9340]
Soit \((E)\) l’équation différentielle \(y''+qy=0\)
Soient \(y_1\) et \(y_2\) deux fonctions de classe \(\mathscr{C}^1\) qui n’ont pas de zéros en commun. On pose \(\Phi = y_1 + iy_2\) et \(\Phi (a) = r_0e^{i\theta_0}\).
Montrer que \(\forall x \geqslant a\), \(\Phi (x) = e^{\Psi(x)}\) où \(\Psi(x)=\displaystyle\int_a^x\frac{\Phi'(t)}{\Phi(t)} \,{\rm d}t + \mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits (r_0) + i\theta_0\).
Montrer que l’on peut écrire \(y_1(x) =r(x)\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits(\theta(x))\) et \(y_2(x) =r(x) \mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits (\theta(x))\) où \(r(x) = \sqrt{y_1^2(x) + y_2^2(x)}\) et \(\theta (x) = \theta_0 +\displaystyle\int_a^x \displaystyle\frac{y_1y'_2-y_2y'_1}{y_1^2+ y_2^2}\).
On pose \(x \mapsto f(x) =\displaystyle\int_a^{x} \sqrt {q(t)}\,{\rm d}t\).
Montrer que \(f\) réalise une bijection de \(\left[a,+\infty\right[\) sur \(\mathbf{R}^+\).
Soit \(y\) une solution de \((E)\), non identiquement nulle. On pose \(Y = y\mathbin{\circ} f^{-1}\). Montrer que \(Y'' +vY' +Y =0\) où \(v~: t \mapsto\displaystyle\frac{q'(f^{-1}(t))}{2 (q(f^{-1}(t)))^{3/2}}\).
Montrer que \(Y\) et \(Y'\) n’ont pas de zéro en commun et que l’on peut écrire \(Y = r \mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits (\theta)\) et \(Y'= r \mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits (\theta)\) où \(r\), \(\theta\) sont des fonctions de classe \(\mathscr{C}^1\).
Montrer que \((r^2)' = -2v r^2 \mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits^2(\theta)\). En déduire que \(y\) et \(y'\) sont bornées.
[planches/ex1080] ens cachan, ens rennes MP 2016 Soient \(f\) dans \(\mathscr{C}^0([0,1],\mathbf{R}_-^*)\) et \((E)\) l’équation différentielle \(x''+f(t)x=0\) sur \([0,1]\).
[planches/ex1080]
Décrire la structure de l’ensemble des solutions de \((E)\), rappeler le théorème de Cauchy linéaire, mettre le système différentiel associé à \((E)\) sous forme matricielle.
Montrer que si \(x\) est solution de \((E)\) et vérifie \(x(0)=x(1)=0\) alors \(x=0\).
Montrer qu’il existe \(\varepsilon>0\) tel que pour toute solution de \((E)\), on ait : \[\varepsilon^2\int_0^1x(t)^2\,dt\leqslant\varepsilon\int_0^1x'(t)^2\,dt\leqslant\int_0^1(1-t)x(t)^2\,dt.\]
[planches/ex7887] polytechnique, espci PC 2022 Déterminer les réels \(\lambda\) pour lesquels il existe \(f:\mathbf{R}\longrightarrow\mathbf{R}\) deux fois dérivable telle que \(\forall x\in\mathbf{R}\), \(f''(x)+(\lambda-x^2)f(x)=0\), \(f(0)=0\), et \(f\) tende vers 0 en \(+\infty\).
[planches/ex7887]
Indication : Considérer \(g:x\longmapsto f(x)e^{x^2/2}\).
Un exercice sélectionné se reconnaît à sa bordure rouge