[concours/ex3119] polytechnique P 1993
[concours/ex3119]
Soit \(g\), \(k:[a,b]\rightarrow\mathbf{R}\) avec \(g\) continue et \(k\) de classe \(C^1\) ne s’annulant pas sur \([a,b]\) et \[(E)\quad(ky')'+gy=0.\]
Montrer que l’ensemble des zéros d’une solution non nulle de \((E)\) est fini.
Soit \(y_1\) et \(y_2\) deux solutions indépendantes de \((E)\). Montrer que si \(x_1\) et \(x_2>x_1\) sont deux zéros de \(y_1\), alors \(y_2\) s’annule sur \(\left]x_1,x_2\right[\).
Soit \(g_1\), \(g_2:[a,b]\rightarrow\mathbf{R}\) continues telles que \(g_1<g_2\), \[(E_j)\quad(ky')'+g_jy=0\quad(j=1,2)\] et \(u\) une solution non nulle de \(E_1\) s’annulant en \(x_1\) et \(x_2>x_1\). Montrer que toute solution de \((E_2)\) s’annule sur \(\left]x_1,x_2\right[\).
[oraux/ex3136] ens PC 2011 Soit \(g\in\mathscr{C}^\infty(\mathbf{R}_+,\mathbf{R})\). On suppose qu’il existe \((\alpha,\beta)\in(\mathbf{R}_+^*)^2\) tel que : \(\forall x\in\mathbf{R}_+\), \(|g(x)|\leqslant\alpha e^{-\beta x}\). Montrer que l’équation différentielle \(u''-(1+g)u=0\) possède une solution non nulle ayant pour limite 0 en \(+\infty\).
[oraux/ex3136]
Indication : Considérer une suite de fonctions \((u_n)_{n\geqslant 0}\) telle que : \(\forall n\in\mathbf{N}\), \(u_{n+1}''-u_{n+1}=gu_n\).
[planches/ex1100] mines MP 2016 Soient \(a\) et \(b\) deux fonctions continues de \(\mathbf{R}\) dans \(\mathbf{R}\). Que peut-on dire de la dimension de l’espace des solutions sur \(\mathbf{R}\) de l’équation différentielle \[xy''+a(x)y'+b(x)y=0\ ?\]
[planches/ex1100]
[planches/ex0965] centrale PSI 2013 Soit \(F\) l’espace vectoriel des fonctions continues et bornées sur \(\left]0,+\infty\right[\). Pour \(f\in F\), on considère l’équation différentielle \((E)\) : \(x^2y''+2y'-2y=f(x)\).
[planches/ex0965]
Trouver les fonctions \(x\mapsto x^r\) solutions de l’équation homogène associée à \((E)\).
Soit \(g(x)=\displaystyle\int_0^x{-tf(t)\over3x^2}\,dt+\int_x^{+\infty}{-xf(t)\over3t^2}\,dt\). Montrer que \(g\) est bien définie sur \(\left]0,+\infty\right[\) puis vérifier que \(g\) est solution de \((E)\).
Quel est le lien entre les deux questions précédentes ?
Montrer que l’application qui envoie \(f\) sur \(g\) définit un endomorphisme de \(F\).
[oraux/ex3051] centrale MP 2009 (avec Maple)
[oraux/ex3051]
Maple
Soient \((E)\) : \((1-x)^3y''=y\) et \(y\) l’unique solution de \((E)\) définie sur \(I=\left]-\infty,1\right[\) vérifiant \(y(0)=0\) et \(y'(0)=1\).
Justifier l’existence de \(y\) ; tracer le graphe de \(y\) à l’aide de la fonction odeplot du package plots.
odeplot
plots
On pose \(a_n=y^{(n)}(0)/n\,!\). Établir que \((a_n)\) vérifie une relation de récurrence liant \(a_n\), \(a_{n-1}\), \(a_{n-1}\) et \(a_{n-3}\).
calculer \(a_n\) pour \(n\in\{0,\ldots,10\}\).
Montrer qu’il existe \(\alpha>0\) tel que : \(\forall n\in\mathbf{N}\), \(|a_n|\leqslant\alpha^n\). Qu’en déduire sur \(y\) ?
Montrer que \(y\) est positive sur \(\left[0,1\right[\).
En déduire que \(y(x)\geqslant x+\displaystyle\int_0^x{x-t\over(1-t)^2}\,dt\).
Calculer cette intégrale avec Maple. Qu’en déduire sur le comportement de \(y\) ?
[planches/ex9340] ens PSI 2023 Soient \(a>0\) et \(q \in\mathscr{C}^2(\left[a,+\infty\right[,\mathbf{R}^{+*})\) telle que \(\displaystyle\int_a^{+\infty} \sqrt {q(t)}\,{\rm d}t = +\infty\).
[planches/ex9340]
Soit \((E)\) l’équation différentielle \(y''+qy=0\)
Soient \(y_1\) et \(y_2\) deux fonctions de classe \(\mathscr{C}^1\) qui n’ont pas de zéros en commun. On pose \(\Phi = y_1 + iy_2\) et \(\Phi (a) = r_0e^{i\theta_0}\).
Montrer que \(\forall x \geqslant a\), \(\Phi (x) = e^{\Psi(x)}\) où \(\Psi(x)=\displaystyle\int_a^x\frac{\Phi'(t)}{\Phi(t)} \,{\rm d}t + \mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits (r_0) + i\theta_0\).
Montrer que l’on peut écrire \(y_1(x) =r(x)\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits(\theta(x))\) et \(y_2(x) =r(x) \mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits (\theta(x))\) où \(r(x) = \sqrt{y_1^2(x) + y_2^2(x)}\) et \(\theta (x) = \theta_0 +\displaystyle\int_a^x \displaystyle\frac{y_1y'_2-y_2y'_1}{y_1^2+ y_2^2}\).
On pose \(x \mapsto f(x) =\displaystyle\int_a^{x} \sqrt {q(t)}\,{\rm d}t\).
Montrer que \(f\) réalise une bijection de \(\left[a,+\infty\right[\) sur \(\mathbf{R}^+\).
Soit \(y\) une solution de \((E)\), non identiquement nulle. On pose \(Y = y\mathbin{\circ} f^{-1}\). Montrer que \(Y'' +vY' +Y =0\) où \(v~: t \mapsto\displaystyle\frac{q'(f^{-1}(t))}{2 (q(f^{-1}(t)))^{3/2}}\).
Montrer que \(Y\) et \(Y'\) n’ont pas de zéro en commun et que l’on peut écrire \(Y = r \mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits (\theta)\) et \(Y'= r \mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits (\theta)\) où \(r\), \(\theta\) sont des fonctions de classe \(\mathscr{C}^1\).
Montrer que \((r^2)' = -2v r^2 \mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits^2(\theta)\). En déduire que \(y\) et \(y'\) sont bornées.
[oraux/ex2981] centrale MP 2008 (avec Maple)
[oraux/ex2981]
Résoudre \(y''+\displaystyle{y\over x^2}=0\) sur \(\left[1,+\infty\right[\) à l’aide de Maple. Existe-t-il des solutions bornées ?
Soit \((E)\) : \(y''+\displaystyle{y\over x^2+4x+3}=0\). On se donne une solution \(f\) bornée de \((E)\) sur \(\left[1,+\infty\right[\). Montrer que \(f'\) admet une limite nulle en \(+\infty\). Existe-t-il des solutions non bornées sur \(\left[1,+\infty\right[\) ?
[oraux/ex3147] polytechnique, espci PC 2011 Soit \(y\) une solution de \(y''(x)=xy(x)\) sur \([0,1]\) telle que \(y(0)=1\) et \(y'(0)=0\). Montrer : \(\forall x\in[0,1]\), \(|y'(x)|+|y(x)|\leqslant e^x\).
[oraux/ex3147]
[oraux/ex4963] ens PC 2012 Soient \((E)\) : \(y''+(1+e^{-t}) y=0\) et \((F)\) : \(y''+y=0\). Soient \(f\) une solution non nulle de \((E)\) et \(g\) une solution non nulle de \((F)\).
[oraux/ex4963]
Montrer qu’entre deux zéros de \(g\) il y a au moins un zéro de \(f\).
Montrer que \(f\) possède une infinité de zéros sur \(\mathbf{R}^+\). On note \((x_n)_{n\geqslant 0}\) la suite ordonnée des zéros de \(f\) sur \(\mathbf{R}^+\).
Montrer que \(x_{n+1}-x_n\rightarrow \pi\).
Donner un équivalent de \(x_n\) quand \(n\rightarrow +\infty\).
[planches/ex0917] ens paris, ens lyon, ens cachan MP 2013 Soient \(\eta\) et \(\varphi\) deux fonctions de classe \(\mathscr{C}^\infty\) et 1-périodiques de \(\mathbf{R}\) dans \(\mathbf{R}\), avec \(\eta\) à valeurs dans \(\mathbf{R}_+^*\) et \((E)\) l’équation différentielle : \(y''-\eta y=\varphi\).
[planches/ex0917]
Montrer que \((E)\) admet au plus une solution 1-périodique.
On suppose \(\eta\) constante. Montrer que \((E)\) possède une solution 1-périodique.
Établir l’existence de \(\alpha>0\) tel que, pour \(\lambda\in\mathbf{R}\) vérifiant \(0<|\lambda|<\alpha\), l’équation \(u''-\lambda\eta u=\varphi\) admette une solution 1-périodique.
Indication : On écrit \(\varphi=\lambda\varphi_1+\varphi_0\) avec \(\varphi_1\) constante et \(\displaystyle\int_0^1\varphi_0=0\). On cherche alors la solution \(u\) sous la forme \(\displaystyle\sum\limits_{n=0}^{+\infty}\lambda^n(u_n+c_n)\) où \(c_n\) est constante de \(u_n\) est une fonction 1-périodique vérifiant \(u_n(0)=0\).
Dans la page dédiée à l'examen d'un exercice, vous pouvez choisir de déployer toute sa famille par défaut ou non