[oraux/ex3113] centrale PSI 2010 Soit \(u\in\mathscr{C}^2([0,1],\mathbf{R})\) telle que : \(u''(x)+e^xu'(x)=-1\), \(u(0)=u(1)=0\).
[oraux/ex3113]
Montrer que \(u\) n’admet pas de minimum local sur \(\left]0,1\right[\).
Montrer que \(u'(0)>0\) et \(u'(1)<0\).
Montrer que \(u\) existe et est unique. Exprimer \(u\) à l’aide d’intégrales.
[oraux/ex4931] ens paris, ens lyon, ens cachan MP 2012 Soit \(a>4\). On note \(E\) l’ensemble des \(f\in{\cal C}^0([0,1],\mathbf{R})\) de classe \({\cal C}^1\) sur \(]0,1]\), telles que \(f'^2\) soit intégrable sur \(]0,1]\) et vérifiant en outre \(f(0)=0\) et \(f(1)=1\) ; pour \(f\in E\), on pose \(\phi(f)=\displaystyle\int_0^1 \left(af'^2(t)-\frac{f(t)^2}{t^2}\right)\,dt\).
[oraux/ex4931]
On suppose que \(\phi\) réalise son minimum sur \(E\) en \(f\). Donner une équation différentielle qu’il est plausible que \(f\) vérifie, et en déduire une valeur plausible de \(f\).
Pour \(h\in E\), on pose \(g(t)=\displaystyle\frac{h(t)}{f(t)}\). Exprimer \(\phi(h)\) en fonction de \(g\), et en déduire que \(\phi\) réalise son minimum sur \(E\). Préciser en quels points.
[concours/ex2392] mines M 1995 Soit \(f:\mathbf{R}_+\rightarrow\mathbf{R}\) une fonction continue telle que \(\displaystyle\int_0^{+\infty}f^2(t)\,dt\) converge. Montrer que toute solution de \(x''(t)+(1+f(t))x(t)=0\) est bornée.
[concours/ex2392]
[planches/ex7169] centrale MP 2021 Soit \(f\in\mathscr{C}^1(\left[1,+\infty\right[,\mathbf{R}_+^*)\) telle que \(\mathop{\mathchoice{\hbox{lim}}{\hbox{lim}}{\mathrm{lim}}{\mathrm{lim}}}\limits_{x\rightarrow+\infty}f'(x)=\alpha>0\).
[planches/ex7169]
Soit \(u\in\mathscr{C}^2(\left[1,+\infty\right[,\mathbf{R})\) bornée et solution de l’équation différentielle \(u''-\displaystyle{f'\over f}u'-{u\over f^2}=0\). On pose \(h=\displaystyle{u'\over f}\).
Montrer que \(u'(x)=O(1/x)\) lorsque \(x\rightarrow+\infty\).
Montrer que \(u^2\) admet une limite \(\ell\) en \(+\infty\).
Montrer que \(\ell=0\).
[oraux/ex2894] centrale MP 2005 Soit \(q\) une fonction continue et positive définie sur \(\mathbf{R}\). On note \((E)\) l’équation différentielle : \(y''-qy=0\).
[oraux/ex2894]
Montrer qu’une solution non nulle de \((E)\) ne s’annule qu’au plus une fois.
Désormais \(q(t)=e^t\). Montrer que les solutions de \((E)\) sont développables en série entière.
Donner l’allure des solutions \(f\) et \(g\) de \(y''-e^ty=0\) vérifiant les conditions initiales \(f(0)=1\), \(f'(0)=0\), \(g(0)=0\) et \(g'(0)=1\).
[planches/ex1100] mines MP 2016 Soient \(a\) et \(b\) deux fonctions continues de \(\mathbf{R}\) dans \(\mathbf{R}\). Que peut-on dire de la dimension de l’espace des solutions sur \(\mathbf{R}\) de l’équation différentielle \[xy''+a(x)y'+b(x)y=0\ ?\]
[planches/ex1100]
[oraux/ex3077] ens cachan MP 2010 Soient \(T\in\mathbf{R}_+^*\) et \(a\in\mathscr{C}^1(\mathbf{R},\mathbf{R})\) une fonction \(T\)-périodique. On pose \(a_0=\displaystyle{1\over T}\int_0^Ta(x)\,dx\). Pour \(\varepsilon>0\), soit \(a_\varepsilon:x\mapsto a(x/\varepsilon)\). Soit \(\varphi\in\mathscr{C}^1([0,1],\mathbf{R})\).
[oraux/ex3077]
Montrer que \(\mathop{\mathchoice{\hbox{lim}}{\hbox{lim}}{\mathrm{lim}}{\mathrm{lim}}}\limits_{\varepsilon\rightarrow0^+}\displaystyle\int_0^1a_\varepsilon(u)\varphi(u)\, du=a_0\displaystyle\int_0^1\varphi(u)\,du\).
On suppose désormais qu’il existe \(\alpha>0\) tel que \(\forall x\in\mathbf{R}\), \(a(x)\geqslant\alpha\). Soit \(f\in\mathscr{C}^0([0,1],\mathbf{R})\).
Soit \(\varepsilon>0\). Montrer qu’il existe une unique \(u_\varepsilon\in\mathscr{C}^2([0,1],\mathbf{R})\) solution du problème \((a_\varepsilon u')'=f\) et \(u(0)=u(1)=0\).
Que dire de \(u_\varepsilon\) lorsque \(\varepsilon\rightarrow0^+\) ?
[planches/ex2502] centrale MP 2017 Soit \(q:\mathbf{R}_+\rightarrow\mathbf{R}_+^*\). On considère l’équation différentielle \((\mathscr{E})\) : \(y''(x)=q(x)y(x)\).
[planches/ex2502]
Pour tout \(\alpha\in\mathbf{R}\), on note \(y_\alpha\) l’unique solution de \((\mathscr{E})\) vérifiant \(y_\alpha(0)=1\) et \(y_\alpha'(0)=\alpha\).
Montrer que \(\forall x\in\left]0,+\infty\right[\), \(y_0(x)y_0'(x)>0\). Montrer que \(y_0\) est strictement croissante.
Montrer que \(\forall\alpha\in\mathbf{R}\), \(\forall x\in\left]0,+\infty\right[\), \(y_\alpha(x)=y_0(x)\left(\displaystyle\int_0^x{\alpha\over y_0^2(t)}\,dt\right)\).
Montrer qu’il existe \(\alpha_1<0\) tel que l’on ait, pour \(\alpha\in\mathbf{R}\), l’équivalence entre « \(y_\alpha\) s’annule sur \(\mathbf{R}_+\) » et « \(\alpha<\alpha_1\) ». Calculer \(\alpha_1\).
[planches/ex0956] centrale MP 2013 Soit \(q\in\mathscr{C}^1(\mathbf{R},\mathbf{C})\) \(\pi\)-périodique. Pour \(\omega\in\mathbf{R}\), on considère l’équation différentielle \((E_\omega)\) : \(x''+(\omega^2-q)x=0\) et on note \(S(\omega)\) l’ensemble de ses solutions.
[planches/ex0956]
Établir l’existence de \(x_1\) et \(x_2\) dans \(S(\omega)\) telles que : \[(x_1(0),x'_1(0))=(1,0)\quad\hbox{et}\quad(x_2(0),x'_2(0))=(0,1).\] Montrer que \((x_1,x_2)\) est libre.
Calculer le wronskien de \((x_1,x_2)\).
Soit \(T\) qui à \(x\in S(\omega)\) associe \(T(x):t\mapsto x(t+\pi)\). Montrer que \(T\) est un automorphisme de \(S(\omega)\). Donner la matrice de \(T\) dans la base \((x_1,x_2)\).
On pose \(\Delta=\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits(T)/2\). Montrer que \(\chi_T=X^2-2\Delta X+1\).
Si \(|\Delta|>1\), montrer que \((E_\omega)\) possède des solutions non bornées. Si \(|\Delta|<1\), montrer que les solutions de \((E_\omega)\) sont bornées.
Montrer que : \[\begin{aligned} x_1(t)&=&\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits(\omega t)+\int_0^tx_1(u)q(u)\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(\omega(t-u))\,du,\cr x_2(t)&=&{\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(\omega t)\over t}+\int_0^tx_2(u)q(u)\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(\omega(t-u))\,du. \end{aligned}\] On fait désormais varier \(\omega\).
Montrer que, lorsque \(\omega\rightarrow+\infty\), \(\Delta_\omega=\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits(\omega\pi)+O(1/\omega)\).
On appelle intervalle de divergence tout intervalle \(I\) de \(\mathbf{R}\) tel que : \(\forall\omega\in I\), \(|\Delta_\omega|>1\).
Soit \(\varepsilon>0\). Établir l’existence de \(X\in\mathbf{R}_+\) tel que, pour tout intervalle de divergence \(I\subset\left[X,+\infty\right[\), il existe un entier \(n\) tel que \(I\subset[n-\varepsilon,n+\varepsilon]\).
[oraux/ex3146] polytechnique, ens cachan PSI 2011
[oraux/ex3146]
Donner un exemple de fonction continue, non identiquement nulle au voisinage de 0 et telle que 0 n’est pas un zéro isolé.
Soient \(f:\mathbf{R}\rightarrow\mathbf{R}\) dérivable et \(a\in\mathbf{R}\). On suppose que \(f(a)=0\) et que \(a\) n’est pas un zéro isolé de \(f\). Montrer que \(f'(a)=0\).
Soient \((a,b)\in\mathbf{R}^2\) avec \(a<b\), \(f:[a,b]\rightarrow\mathbf{R}\) dérivable telle que \(f(a)=f(b)=0\) et \(\forall x\in\left]a,b\right[\), \(f(x)\geqslant 0\). Montrer : \(f'(a)f'(b)\leqslant 0\).
Soient \(I\) un intervalle de \(\mathbf{R}\), \(p\) et \(q\) dans \(\mathscr{C}^0(I,\mathbf{R})\) et \((E)\) l’équation différentielle : \(y''+py'+qy=0\).
Soit \(f\) une solution non identiquement nulle de \((E)\). Montrer que les zéros de \(f\) sont isolés.
Soient \(f\) et \(g\) deux solutions de \((E)\) et \(t_0\in I\). On suppose qu’il existe \(c\in\mathbf{R}\) tel que \(f(t_0)=cg(t_0)\) et \(f'(t_0)=cg'(t_0)\). Montrer : \(f=cg\).
Soient \(f\) et \(g\) deux solutions indépendantes de \((E)\). Montrer que le wronskien \(W\) de \(f\) et de \(g\) ne s’annule pas. Exprimer \(W(t)\) en fonction de \(W(t_0)\). Montrer que, entre deux zéros consécutifs de \(f\), la fonction \(g\) s’annule.
Vous pouvez signaler le nombre d'énoncés visibles sur chaque page de résultats