[oraux/ex2901] centrale PSI 2005 Soit \(E\) l’ensemble des \(f\in\mathscr{C}^2(\mathbf{R}_+,\mathbf{R})\) telles que : \(\forall x\in\mathbf{R}\), \(f''(x)-(1+x^4)f(x)=0\).
[oraux/ex2901]
Montrer que \(E\) contient une unique fonction \(f_0\) telle que \(f_0(0)=1\) et \(f_0'(0)=1\).
Montrer que \(f_0^2\) est convexe.
Montrer que : \(\forall t\in\mathbf{R}_+\), \(f_0(t)\geqslant 1\).
Montrer que \(1/f_0^2\) est intégrable sur \(\mathbf{R}_+\).
Soit \(f_1:x\in\mathbf{R}_+\mapsto f_0(x)\displaystyle\int_x^{+\infty}{dt\over f_0^2(t)}\).
Montrer que \(f_1\in E\).
Montrer que \(f_1'\geqslant 0\) et que \(f_1\) est bornée.
Quels sont les éléments bornés de \(E\) ?
[planches/ex1114] centrale PSI 2016 On considère l’équation différentielle \[(1)\quad y''=(1+x^4)y.\]
[planches/ex1114]
Montrer que \((1)\) possède une unique solution \(y\) telle que \(y(0)=y'(0)=1\).
Soit \(f\) une solution de \((1)\). On suppose \(\displaystyle{1\over f^2}\) intégrable. Montrer que \(x\mapsto\displaystyle\int_x^{+\infty}{1\over f^2(t)}\,dt\) est également solution de \((1)\) (?).
Montrer que si \(f\) solution de \((E)\) vérifie \(f(0)=f'(0)=1\) alors \(\displaystyle{1\over f^2}\) est intégrable.
[oraux/ex5392] mines MP 2012 Soit \(f\,:\;\mathbf{R}^{+*}\to\mathbf{R}\) continue. On considère l’équation différentielle \((E)\) \(y''=f\,y\).
[oraux/ex5392]
Montrer que les zéros des solutions non nulles sont isolés.
Soient \(\alpha\) et \(\beta\) deux zéros consécutifs d’une solution non nulle de \((E)\). Montrer : \[\int_\alpha^\beta\left|f(t)\right|\,dt>\frac4{\beta-\alpha}.\]
[oraux/ex3012] polytechnique MP 2009 Soient \((a,b)\in\mathbf{R}^2\) avec \(a<b\) et \(f\in\mathscr{C}^0([a,b],\mathbf{R})\). On suppose qu’il existe \(u\) dans \(\mathscr{C}^2([a,b],\mathbf{R})\) non identiquement nulle telle que : \(u''+fu=0\) et \(u(a)=u(b)=0\). Montrer : \(\displaystyle\int_a^b|f(t)|\,dt\geqslant(b-a)/4\).
[oraux/ex3012]
[oraux/ex3075] ens lyon MP 2010 Soient \(q\) une application continue périodique et non identiquement nulle de \(\mathbf{R}\) dans \(\mathbf{R}_+\), \(y\) une solution de \(y''+qy=0\). Montrer que \(y\) s’annule une infinité de fois.
[oraux/ex3075]
[concours/ex5477] polytechnique MP 2007 Soient \(f\in\mathscr{C}^1(\left]0,+\infty\right[,\mathbf{R})\) et \(g\) une solution de \((E)\) : \(y''+fy=0\), non identiquement nulle.
[concours/ex5477]
Montrer que les zéros de \(g\) sont isolés. Dans la suite, \(x_1\) et \(x_2\) sont deux zéros consécutifs de \(g\) vérifiant \(x_1<x_2\).
Montrer, si \(x\in[x_1,x_2]\) : \[\hskip-1cm(x_2-x)\int_{x_1}^x(t-x_1)f(t)g(t)\,dt+ (x-x_1)\int_x^{x_2}(x_2-t)f(t)g(t)\,dt =(x_2-x_1)g(x).\]
En déduire une minoration de \(\displaystyle\int_{x_1}^{x_2}|f(t)|\,dt\).
[oraux/ex3042] mines PC 2009 Soient \(\varphi\in\mathscr{C}^0([a,b],\mathbf{R})\), \(k\in\mathbf{R}_+^*\) et \((E)\) : \(y''+\varphi(x)y'-ky=0\). On suppose que \(f\) est une solution de \((E)\) telle que \(f(a)=f(b)=0\). Montrer que \(f\) est identiquement nulle.
[oraux/ex3042]
[planches/ex1074] tpe PSI 2015 Soient \(E=\mathscr{C}^\infty(\mathbf{R},\mathbf{R})\) et \(\Phi:E\rightarrow E\) qui à \(f\) associe \(g\) telle que \(\forall x\in\mathbf{R}\), \(g(x)=f'(x)-xf(x)\). Montrer que \(\Phi\) est un endomorphisme de \(E\). Déterminer \(\mathop{\mathchoice{\hbox{ker}}{\hbox{ker}}{\mathrm{ker}}{\mathrm{ker}}}\nolimits\Phi\), puis \(\mathop{\mathchoice{\hbox{ker}}{\hbox{ker}}{\mathrm{ker}}{\mathrm{ker}}}\nolimits\Phi\mathbin{\circ}\Phi\).
[planches/ex1074]
[planches/ex1018] mines PSI 2014 Soient \(a\in\mathscr{C}^0(\mathbf{R},\mathbf{R})\) et \((E)\) l’équation différentielle : \(y''+a(x)y=0\).
[planches/ex1018]
Montrer que les wronskiens relatifs à \((E)\) vérifient une équation différentielle du premier ordre.
Soit \(T>0\). Montrer que les trois énoncés suivants sont équivalents :
\((E)\) possède un wronskien \(T\)-périodique ;
tous les wronskiens de \((E)\) sont périodiques ;
la fonction \(a\) est \(T\)-périodique de valeur moyenne nulle.
[oraux/ex2942] centrale PC 2006 Soient \(E=\mathscr{C}^\infty(\mathbf{R},\mathbf{R})\) et, pour \(f\in E\), \(\mu(f)\) l’élément de \(E\) défini par : \[\forall x\in\mathbf{R},\quad\mu(f)(x)=f'(x)-xf(x).\]
[oraux/ex2942]
Montrer que \(\mu\) est un endomorphisme de \(E\), déterminer son noyau.
L’application \(\mu\) est-elle surjective ?
Si \(g\in E\), déterminer \(\mu^{-1}(g)\).
Déterminer \(\mu\mathbin{\circ}\mu\).
Résoudre : \(y''-2xy'+(x^2-1)y=0\).
Si \(n\in\mathbf{N}^*\), résoudre \(\mu^{(n)}(f)=0\).
Vous pouvez choisir l'ordre d'affichage initial des résultats d'une requête