[planches/ex1073] tpe PSI 2015 Soit l’équation différentielle \[(E)\quad y''+f(x)y=0,\] où \(f\) est continue et intégrable sur \(\mathbf{R}\).
[planches/ex1073]
Montrer que si \(y_1\) et \(y_2\) sont solutions de \((E)\) alors \(y_1'y_2-y_2'y_1\) est constante.
Montrer que si \(y\) est une solution de \(E\) bornée sur \(\mathbf{R}\) alors \(y'(x)\) admet une limite finie quand \(x\) tend vers \(+\infty\), puis montrer que cette limite est nulle.
Montrer que \((E)\) admet une solution non bornée.
[planches/ex6826] mines MP 2021 Soient \(f\in\mathscr{C}^0(\mathbf{R},\mathbf{R})\) et \(S\) l’ensemble des solutions de \(y''+fy=0\). On suppose \(f\) intégrable sur \(\mathbf{R}\).
[planches/ex6826]
Soient \(y_1\), \(y_2\in S\) et \(w=y_1y_2'-y_1'y_2\). Que peut-on dire de \(w\) ?
Montrer que \(S\) contient des fonctions non bornées.
[concours/ex5750] mines MP 2007 Soit \((E)\) : \(x''+q(t)x=0\) où \(q:\mathbf{R}_+\rightarrow\mathbf{R}\) est continue et intégrable. Montrer que \((E)\) possède des solutions non bornées sur \(\mathbf{R}_+\).
[concours/ex5750]
[concours/ex4169] mines M 1990 Soit \(f\in\mathscr{C}(\mathbf{R}_+,\mathbf{R})\) telle que \(\displaystyle\int_0^{+\infty}\left|f\right|\) converge. L’équation \(y''+fy=0\) a-t-elle toutes ses solutions bornées ?
[concours/ex4169]
[oraux/ex2926] mines PSI 2006 Soit \(q\in\mathscr{C}^0(\mathbf{R},\mathbf{R}_+)\) intégrable sur \(\mathbf{R}_+\) et \((E)\) : \(y''+qy=0\). Montrer que si \(f\) est une solution bornée de \((E)\) alors \(\mathop{\mathchoice{\hbox{lim}}{\hbox{lim}}{\mathrm{lim}}{\mathrm{lim}}}\limits_{x\rightarrow+\infty}f'(x)=0\). En déduire que \((E)\) admet des solutions non bornées.
[oraux/ex2926]
[oraux/ex2800] centrale 2003 Soit \(q:\mathbf{R}_+\rightarrow\mathbf{R}\) une application continue et intégrable sur \(\mathbf{R}_+\). Soit \((E)\) l’équation différentielle \(y''+qy=0\).
[oraux/ex2800]
Si \(y\) est une solution bornée de \((E)\), que dire de \(y'\) en \(+\infty\) ?
Montrer qu’il existe des solutions de \((E)\) non bornées.
[equadiff/ex0092] Soit \((E)\) l’équation \(x''+q(t)x=0\) où \(q\) est une fonction continue sommable sur \(\mathbf{R}_+\).
[equadiff/ex0092]
Montrer que le wronskien de deux solutions est constant.
Montrer que \((E)\) admet des solutions non bornées.
[concours/ex0283] mines MP 1996 On considère une application continue \(p:\left[0,+\infty\right[\rightarrow\left[0,+\infty\right[\) telle que \(\displaystyle\int_0^{+\infty}p(t)\,dt\) converge et l’équation différentielle \((E)\) : \(y''-p(x)y=0\).
[concours/ex0283]
Montrer que si \(y\) est une solution bornée de \(E\), alors \(y'\) admet une limite finie, que l’on déterminera, en \(+\infty\).
[oraux/ex3071] tpe PC 2009 Résoudre : \(x^2y''+axy'+by=0\).
[oraux/ex3071]
[equadiff/ex0088] Montrer comment on peut résoudre une équation différentielle (d’Euler) de la forme \[(E)\quad x^2y''+axy'+by=0\] à l’aide du changement de variable \(t=\mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits|x|\).
[equadiff/ex0088]
[oraux/ex2913] ccp PC 2005 Soient \((a,b,c)\in\mathbf{R}^3\) et \((1)\) l’équation différentielle : \(ax^2y''(x)+bxy'(x)+cy(x)=0\), dont on considérera les solutions sur \(\left]0,+\infty\right[\).
[oraux/ex2913]
Justifier le changement de variable \(t=\mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits x\) et résoudre \((1)\).
Résoudre sur \(\mathbf{R}_+^*\) suivant les valeurs de \(a\) : \(x^2y''(x)+xy'(x)+y(x)=\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(a\mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits x)\).
[equadiff/ex0880] Équation d’Euler
[equadiff/ex0880]
On considère : \[(E)\qquad x^2y''+a\,xy'+by=c(x),\] avec \(a\), \(b\in\mathbf{R}\). On pose \(x=\varepsilon e^t\) avec \(\varepsilon=\pm1\) et \(y(x)=z(t)\).
Montrer que l’équation différentielle en \(z\), transformée de \((E)\) par ce changement de variable, est à coefficients constants.
Résoudre par exemple \(x^2y''-5xy'+9y=x+1\).
[equadiff/ex0107] Soit l’équation \(x''+q(t)x=0\) avec \(q\) continue et négative sur \(\mathbf{R}\). Montrer qu’une solution de \((E)\) qui admet deux zéros est identiquement nulle.
[equadiff/ex0107]
[oraux/ex3169] centrale MP 2011 Soient \(q\in\mathscr{C}^0(\mathbf{R}_+,\mathbf{R}_+)\) et \(E\) l’ensemble des solutions de l’équation \(y''-qy=0\).
[oraux/ex3169]
Justifier l’existence de la solution \(y_s\) telle que \(y_s(0)=1\) et \(y'_s(0)=s\).
Montrer que si \(y\in E\) alors \(y^2\) est convexe.
Montrer que \(y_1\geqslant 1\) sur \(\mathbf{R}_+\) puis que \(\displaystyle{1\over y_1^2}\) est intégrable sur \(\mathbf{R}_+\).
Montrer que \(Y:x\mapsto y_1(x)\displaystyle\int_x^{+\infty}{dt\over y_1(t)^2}\) est une solution bornée de \(E\).
Indication : Montrer que \(\displaystyle\int_x^{+\infty}{dt\over y_1(t)^2}\leqslant\displaystyle\int_x^{+\infty}{y_1'(t)\over(y_1-t)^2}\,dt\).
Montrer qu’il existe un unique \(s_0\in\mathbf{R}\) tel que \(y_{s_0}\) ne s’annule pas et soit bornée sur \(\mathbf{R}_+\). Montrer que \(y_{s_0}\) et sa dérivée convergent en \(+\infty\).
Que dire de la limite de \(y_s\) si \(s>s_0\) ? si \(s<s_0\) ?
[planches/ex0966] centrale PSI 2013 (avec Maple)
[planches/ex0966]
Maple
Soient \(g:\left]0,+\infty\right[\rightarrow\mathbf{R}\) continue et \((E)\) l’équation différentielle : \(y''-2y'+y=g\).
Quelle est la structure de l’ensemble des solutions de \((E)\) ?
Déterminer cet ensemble avec \(g:x\mapsto1/x^2\). Les solutions obtenues sont-elles prolongeables par continuité à droite en 0 ?
Déterminer l’ensemble des solutions de \((E)\) pour \(g:x\mapsto-\mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits x\). Les solutions obtenues sont-elles prolongeables par continuité à droite en 0 ? Les solutions obtenues sont-elles prolongeables de classe \(\mathscr{C}^1\) en 0 ?
Soit \(S\) l’ensemble des solutions de classe \(\mathscr{C}^0\) de \((E)\) et \(S_1\) le sous-ensemble de \(S\) formé des solutions de classe \(\mathscr{C}^1\). Trouver une condition nécessaire et suffisante sur \(g\) pour que \(S=S_1\).
Dans cette question, \(g=g_\alpha:x\mapsto x^\alpha\). Déterminer les \(\alpha\) pour lesquels \(S_1=S\).
Montrer qu’il existe une unique solution de \((E)\) telle que \(y(0)=y'(0)=0\).
[oraux/ex2819] ens cachan 2004 Considérons l’équation différentielle : \(y''+a(t)y'+b(t)y=0\) où \(a\) et \(b\) sont des fonctions réelles continues. Soit \(y_1\) et \(y_2\) deux solutions linéairement indépendantes.
[oraux/ex2819]
Montrer que les zéros de \(y_1\) sont isolés et qu’entre deux zéros de \(y_1\) il y a un unique zéro de \(y_2\).
Soit l’équation différentielle \(y''+q(t)y=0\) où \(q\) est continue négative. Soit \(y\) une solution non constante ; montrer que \(y\) a au plus un zéro.
[oraux/ex5641] centrale MP 2012 Soient \(q\in{\cal C}^0(\mathbf{R},\mathbf{R}^-)\) non identiquement nulle, \((a,b)\in (\mathbf{R}^{+*})^2\) et \((E)\) l’équation différentielle : \(y''+q\,y=0\).
[oraux/ex5641]
Justifier l’existence d’une unique solution \(y_0\) de \((E)\) vérifiant \(y_0(0)=a\) et \(y'_0(0)=0\).
Résoudre l’équation différentielle \(Y''-b^2\,Y=0\) avec \(Y(0)=a\) et \(Y'(0)=0\).
Montrer que \(y_0^2\) est convexe.
La fonction \(y_0\) admet-elle deux zéros distincts ? Est-elle bornée ?
Montrer que \(y_0\) est minorée par \(a\) et convexe.
On suppose \(q\leqslant-b^2\). Montrer que \(y_0\geqslant Y\).
[concours/ex1714] polytechnique MP 1999 Soit \(q:\mathbf{R}\rightarrow\mathbf{R}\) continue, positive et \(y\) solution de \((E)\) : \(y''(x)=q(x)y(x)\).
[concours/ex1714]
Montrer que \(y^2\) est convexe. Peut-elle être bornée ?
On suppose que \(y\) n’est pas nulle. Montrer que \(y\) et \(y'\) s’annulent au plus une fois.
Montrer que \(\displaystyle{y^2(x)\over x}\) a une limite finie en \(+\infty\).
[oraux/ex3122] centrale PC 2010 Soient \(I\) un intervalle de \(\mathbf{R}\), \(q\in\mathscr{C}^0(I,\mathbf{R}_-^*)\) et \((E)\) l’équation différentielle \(y''+qy=0\).
[oraux/ex3122]
Si \(f\) est solution de \(E\), montrer que \(f^2\) est convexe.
Montrer que toute solution non identiquement nulle de \((E)\) s’annule au plus une fois.
[concours/ex1319] mines MP 1998 Soit \(I\) un intervalle non vide de \(\mathbf{R}\), et \(p\in\mathscr{C}(I,\mathbf{C})\). Soit \(u\) une solution de \(y''+py=0\).
[concours/ex1319]
On suppose que, pour tout \(t\in I\), \(\mathop{\mathchoice{\hbox{Re}}{\hbox{Re}}{\mathrm{Re}}{\mathrm{Re}}}\nolimits p(t)\leqslant 0\). Montrer que si \(u\) s’annule deux fois sur \(I\), alors \(u=0\).
On suppose que pour tout \(t\in I\), \(\mathop{\mathchoice{\hbox{Im}}{\hbox{Im}}{\mathrm{Im}}{\mathrm{Im}}}\nolimits p(t)\neq0\). Montrer que si \(u\) s’annule deux fois sur \(I\), alors \(u=0\).
[oraux/ex2955] polytechnique MP 2008 Soit \(q\) une fonction réelle continue sur \(\mathbf{R}\) et ne prenant que des valeurs strictement négatives. On considère l’équation différentielle \(x''+q(t)x=0\).
[oraux/ex2955]
Montrer que la seule solution bornée sur \(\mathbf{R}\) est la fonction nulle.
Montrer qu’une solution non nulle s’annule au plus une fois sur \(\mathbf{R}\).
[planches/ex0935] polytechnique, ens cachan PSI 2013 Soit \((E)\) l’équation différentielle : \(y''(x)+q(x)y(x)=0\) où \(q\) est une fonction continue de \(\mathbf{R}\) dans \(\mathbf{R}\), non identiquement nulle et négative.
[planches/ex0935]
Soit \(y\in\mathscr{C}^2(\mathbf{R},\mathbf{R})\) une solution positive de \((E)\) sur \(\mathbf{R}\). Montrer que \(y\) est convexe.
Soit \(y\in\mathscr{C}^2(\mathbf{R},\mathbf{R})\) une solution de \((E)\) sur \(\mathbf{R}\). Montrer que \(y^2\) est convexe.
Soit \(y\in\mathscr{C}^2(\mathbf{R},\mathbf{R})\) une solution bornée de \((E)\) sur \(\mathbf{R}\). Montrer que \(y\) est identiquement nulle.
Soit \(y\in\mathscr{C}^2(\mathbf{R},\mathbf{R})\) une solution de \((E)\) sur \(\mathbf{R}\) telle que \(y(0)=1\) et \(y'(0)=0\).
Montrer que pour tout \(x\in\mathbf{R}\), \(|y(x)|\geqslant 1\), puis \(y(x)\geqslant 1\).
Montrer que \(y\) est convexe.
[planches/ex1096] polytechnique, ens cachan PSI 2016 Soit \(q\in\mathscr{C}^0(\mathbf{R},\mathbf{R}_+^*)\). On cherche s’il existe des solutions non nulles bornées de l’équation \((E)\) : \(y''-q(x)y=0\).
[planches/ex1096]
Soit \(f\) une solution non nulle de \((E)\). Montrer qu’on peut supposer l’existence d’un réel \(a\) tel que \(f(a)>0\) et \(f'(a)>0\).
Montrer que, pour tout \(x\geqslant a\), \(f'(x)\geqslant f'(a)\).
Conclure.
[oraux/ex5642] centrale MP 2012 Soient \(q\in{\cal C}^0(\mathbf{R},\mathbf{R})\) paire et \(\pi\)-périodique, \((E)\) l’équation différentielle : \(y''+q\,y=0\).
[oraux/ex5642]
Montrer qu’il existe une unique solution \(y_1\) de \((E)\) telle que \(y_1(0)=1\) et \(y'_1(0)=0\) et une unique solution \(y_2\) de \((E)\) telle que \(y_2(0)=0\) et \(y'_2(0)=1\).
Montrer que \((y_1,y_2)\) est une base de l’espace vectoriel \(S\) des solutions de \((E)\).
Montrer que \(y_1\) est paire et \(y_2\) impaire.
Montrer que la fonction \(y_1\,y'_2-y'_1\,y_2\) est constante.
Pour \(y\in S\), on note \(f(y)\,:\;t\mapsto y(t+\pi)\).
Montrer que \(f\) est un endomorphisme de \(S\).
Déterminer la matrice \(A\) de \(f\) dans la base \((y_1,y_2)\).
Montrer que le polynôme caractéristique de \(A\) est de la forme \(X^2-2a\,X+1\), pour un certain réel \(a\).
On suppose \(a=1\). Montrer que \((E)\) admet une solution \(\pi\)-périodique non triviale.
On suppose \(a=-1\). Montrer que \((E)\) admet une solution \(2\pi\)-périodique non triviale.
On suppose \(|a|>1\). Montrer que \(f\) admet deux vecteurs propres linéairement indépendants. Montrer que ce sont des fonctions non bornées. En déduire les solutions bornées de \((E)\).
[planches/ex0953] mines PC 2013 Soient \(a\), \(b\in\mathscr{C}^0(\mathbf{R},\mathbf{R})\) et \[(E)\ :\quad y''+a(x)y'+b(x)y=0.\] Montrer que \((E)\) possède un système fondamental \((f,g)\) de solutions avec \(f\) paire et \(g\) impaire si et seulement si \(a\) est impaire et \(b\) est paire.
[planches/ex0953]
[planches/ex2138] mines MP 2017 Soient \(a\) et \(b\) deux fonctions continues de \(\mathbf{R}\) dans \(\mathbf{R}\). À quelle condition l’équation différentielle \(y''(t)+a(t)y'(t)+b(t)y(t)=0\) admet-elle une base formée d’une fonction paire et d’une fonction impaire ?
[planches/ex2138]
[oraux/ex3003] ens lyon MP 2009 Soient \(T>0\), \(q\in\mathscr{C}^0(\mathbf{R},\mathbf{R})\) une fonction \(T\)-périodique, \(S\) l’espace des solutions réelles de \(y''+qy=0\) sur \(\mathbf{R}\), \(y_1\) (resp. \(y_2\)) l’élément de \(S\) tel que \(y_1(0)=0\), \(y_1'(0)=1\) (resp. \(y_2(0)=1\), \(y_2'(0)=0\)).
[oraux/ex3003]
Montrer que si \(f\) est dans \(S\), il en est de même de \(f_T:x\mapsto f(x+T)\). On note \(\Phi\) l’endomorphisme de \(S\) que à \(f\in S\) associe \(f_T\) et \(A\) sa matrice dans la base \((y_1,y_2)\).
Calculer le déterminant de \(A\).
On suppose \(|\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits A|<2\). Montrer que tout élément de \(S\) est borné sur \(\mathbf{R}\).
On suppose \(q\geqslant 0\) et \(q\) non identiquement nulle. Montrer que tout élément de \(S\) s’annule au moins deux fois sur \(\mathbf{R}\).
On suppose que \(q\) est positive et que \(\displaystyle{1\over T}\int_0^Tq<4\). Montrer que toutes les solutions de \((E)\) sont bornées sur \(\mathbf{R}\).
Indication : on admettra que si \(f\in\mathscr{C}^2([a,b],\mathbf{R})\) avec \(f(a)=f(b)=0\) alors \(\displaystyle\int_a^b\left|{f''\over f}\right|>\displaystyle{4\over b-a}\).
[planches/ex9044] ccinp PC 2022 Soit \(q\) une fonction continue et \(T\)-périodique de \(\mathbf{R}\) dans \(\mathbf{R}\). On considère l’équation différentielle \((E_q)\) : \(y''+qy=0\).
[planches/ex9044]
On suppose que \(q\) est la fonction constante égale à 1. Montrer que les solutions de \((E_1)\) sont toutes bornées.
On rappelle qu’une base de l’espace \(S_q\) des solutions de \((E_q)\) est \((y_1,y_2)\) où \(y_1\) et \(y_2\) sont les solutions de \((E_q)\) telles que \((y_1(0)=1,\ y_1'(0)=0)\) et \((y_2(0)=0,\ y_2'(0)=1)\). Soit \(F\) l’application qui à \(y\in S_q\) associe la fonction \(t\longmapsto y(t+T)\).
Montrer que \(F\) est un endomorphisme de \(S_q\) et que sa matrice dans la base \((y_1,y_2)\) est \(A=\pmatrix{y_1(T)&y_2(T)\cr y_1'(T)&y_2'(T)}\).
Montrer que la fonction \(W:t\longmapsto y_1(t)y_2'(t)-y_1'(t)y_2(t)\) est constante.
Montrer que \(\chi_A(X)=X^2-\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits(A)X+1\).
On suppose que \(|\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits(A)|<2\). Montrer que \(\chi_A\) admet deux racines complexes conjuguées \(\lambda\) et \(\overline\lambda\). Montrer qu’il existe deux solutions \(z_1\) et \(z_2\) de \((E_q)\), à valeurs dans \(\mathbf{C}\), telles que \(F(z_1)=\lambda z_1\) et \(F(z_2)=\overline\lambda z_2\).
[planches/ex1083] ens paris, ens lyon, ens cachan, ens rennes MP 2016 Soit \(q:\mathbf{R}\rightarrow\mathbf{R}\) continue et de période \(\pi\). On note \(E\) l’ensemble des solutions de : \(y''+qy=0\).
[planches/ex1083]
On note \(f:\mathscr{C}^2(\mathbf{R})\rightarrow\mathscr{C}^2(\mathbf{R})\) l’application qui à \(\varphi\) associe \(x\mapsto\varphi(x+\pi)\).
Montrer que \(E\) est un espace vectoriel réel sont on précisera la dimension.
Montrer que \(f\) induit un endomorphisme de \(E\) noté \(\tilde f\).
Montrer : \(\mathop{\mathchoice{\hbox{det}}{\hbox{det}}{\mathrm{det}}{\mathrm{det}}}\nolimits(\tilde f)=1\).
On suppose \(|\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits\tilde f|<2\). Montrer que \(E\) est constitué de fonctions bornées.
On suppose \(|\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits\tilde f|>2\). Montrer que la fonction nulle est la seule fonction bornée de \(E\).
On suppose \(|\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits\tilde f|=2\). Montrer que \(E\) contient une fonction bornée non nulle.
Soient \((a,b)\in\mathbf{R}^2\) avec \(a<b\), \(\varphi:[a,b]\rightarrow\mathbf{R}\) de classe \(\mathscr{C}^2\), nulle en \(a\) et \(b\) et strictement positive sur \(\left]a,b\right[\). On admet que, pour une telle fonction, \(\displaystyle\int_a^b{|\varphi''(t)|\over\varphi(t)}\,dt>{4\over b-a}\).
Montrer que si \(q\) est positive, \(q\) n’est pas la fonction nulle et \(\displaystyle\int_0^\pi q(t)\,dt\leqslant{4\over\pi}\), alors \(E\) ne contient que des fonctions bornées.
[planches/ex9271] ens paris, ens lyon, ens saclay, ens rennes MP 2023 Soit \(p:\mathbf{R}\rightarrow\mathbf{R}\) une fonction continue, non identiquement nulle, \(\pi\)-périodique et telle que \(\displaystyle\int_0^{\pi}p(t)\mathrm{d} t \geqslant 0\) et \(\displaystyle\int_0^\pi |p(t)| \mathrm{d} t\leqslant\frac{\pi}{4}\).
[planches/ex9271]
Montrer que l’équation \(u''+pu=0\) n’admet pas de solution \(u\) non nulle sur \(\mathbf{R}\) telle qu’il existe \(\lambda\in\mathbf{R}^*\) tel que \(\forall t\in\mathbf{R}\), \(u(t+\pi)=\lambda\, u(t).\)
[oraux/ex3097] mines PC 2010 Soient \(a\), \(b\in\mathscr{C}^0(\mathbf{R},\mathbf{R})\) et \((f,g)\) un système fondamental de solutions de l’équation différentielle \((E)\) : \(y''+ay'+by=0\). On suppose \(f\) paire et \(g\) impaire. Montrer que \(a\) est impaire et \(b\) est paire.
[oraux/ex3097]
[planches/ex7679] ens PSI 2022 Soit \(q\in\mathscr{C}^0(\mathbf{R},\mathbf{R})\) paire et \(2\pi\)-périodique. L’objectif de l’exercice est d’étudier les solutions bornées de l’équation \((E)\) : \(y''+qy=0\). Soient \(y_1\) la solution de \((E)\) vérifiant les conditions \(y_1(0)=1\) et \(y_1'(0)=0\) et \(y_2\) la solution telle que \(y_2(0)=0\) et \(y_2'(0)=1\).
[planches/ex7679]
Montrer que la fonction \(y_1\) est paire et que la fonction \(y_2\) est impaire.
Soient \(W=\mathop{\mathchoice{\hbox{Vect}}{\hbox{Vect}}{\mathrm{Vect}}{\mathrm{Vect}}}\nolimits(y_1,y_2)\) et \(A:y\in W\longmapsto(x\longmapsto y(\pi+x))\). Déterminer la matrice de \(A\) dans la base \((y_1,y_2)\) puis calculer \(\mathop{\mathchoice{\hbox{det}}{\hbox{det}}{\mathrm{det}}{\mathrm{det}}}\nolimits(A)\).
Avec la première question, calculer \(A^{-1}\).
À l’aide du théorème de Cayley-Hamilton, montrer que \(y_1(\pi)=y_2'(\pi)\).
Soit \(T\) la trace de \(A\). Montrer que, si \(|T|<2\), les solutions de \((E)\) sont bornées puis que, si \(|T|=2\), il existe une solution de \((E)\) non nulle et bornée.
[planches/ex4991] mines MP 2019 Soient \(a\) et \(b\) deux fonctions continues et 1-périodiques de \(\mathbf{R}\) dans \(\mathbf{C}\), \(E\) l’espace des solutions de \(y''+a(t)y'+b(t)y=0\). Montrer qu’il existe \(\lambda\in\mathbf{C}^*\) et \(y\in E\setminus\{0\}\) tels que \(\forall t\in\mathbf{R}\), \(y(t+1)=\lambda y(t)\).
[planches/ex4991]
[planches/ex1066] centrale PSI 2015 Soit \(a\in\mathscr{C}^1(\mathbf{R}_+,\mathbf{R})\) telle que l’intégrale \(\displaystyle\int_0^{+\infty}|a(x)|\,dx\) existe.
[planches/ex1066]
A-t-on nécessairement \(a(x)\mathrel{\mathop{\longrightarrow}\limits_{x\rightarrow+\infty}}0\) ?
Soit \(f\) vérifiant sur \(\mathbf{R}_+\) : \(y''(x)+(1+a(x))y(x)=0\). Soit \[g:x\in\mathbf{R}_+\mapsto f(x)+\int_0^x\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(x-t)a(t)f(t)\,dt.\] Montrer que \(g\) est de classe \(\mathscr{C}^2\) sur \(\mathbf{R}_+\), puis que \(g''+g=0\).
Montrer qu’il existe \(c\in\mathbf{R}_+\) tel que : \(\forall x\in\mathbf{R}_+\), \(|f(x)|\leqslant c+\displaystyle\int_0^x|a(t)|\,|f(t)|\,dt\).
Montrer que toutes les solutions de \(y''+(1+a)y=0\) sont bornées.
[concours/ex3236] mines M 1993 Soit \(u\) une application continue de \(\mathbf{R}_+\) dans \(\mathbf{R}\) et \(f\) une application continue de \(\mathbf{R}_+\) dans \(\mathbf{R}_+\). On suppose qu’il existe une constante \(A\) telle que, pour tout \(x\) de \(\mathbf{R}_+\), \[u(x)\leqslant A+\int_0^xf(t)u(t)\,dt.\] Montrer que \[u(x)\leqslant A\mathop{\mathchoice{\hbox{exp}}{\hbox{exp}}{\mathrm{exp}}{\mathrm{exp}}}\nolimits\left(\int_0^xf(t)\,dt\right).\] Soit \((E)\) l’équation différentielle : \(y''+y(1+g(t))=0\), où \(g\) est une application continue de \(\mathbf{R}_+\) dans \(\mathbf{R}\) telle que \(\displaystyle\int_0^{+\infty}\bigl|g(t)\bigr|\,dt\) converge. Montrer que toute solution de \(E\) est bornée.
[concours/ex3236]
[planches/ex0928] polytechnique MP 2013 Soit \(q:\mathbf{R}\rightarrow\mathbf{R}\) continue et intégrable. Montrer que toute solution de l’équation différentielle \(y''+(1+q(t))y=0\) est bornée sur \(\mathbf{R}\).
[planches/ex0928]
[planches/ex2825] tpe PC 2017 Soient \(I\) un intervalle symétrique par rapport à l’origine et \(\varphi\) une fonction réelle, paire, de classe \(\mathscr{C}^\infty\) sur \(I\). Soit \((E)\) l’équation différentielle \(y''+\varphi y=0\). Montrer que si \(y\) est solution de \((E)\), alors \(y\) est de classe \(\mathscr{C}^\infty\) sur \(I\). Montrer que \(x\longmapsto y(-x)\) est également solution.
[planches/ex2825]
[planches/ex1109] centrale MP 2016
[planches/ex1109]
Soient \(q_1\) et \(q_2\) deux fonctions continues de \(\mathbf{R}\) dans \(\mathbf{R}\) telles que \(q_2\geqslant q_1\), \(u\) (resp. \(v\)) une solution non identiquement nulle de \(y_1''+q_1y=0\) (resp. \(y''+q_2y=0\)), \(a\) et \(b\) deux zéros consécutifs de \(u\). Montrer que soit \(v/u\) est constante sur \(\left]a,b\right[\), soit \(v\) s’annule sur \(\left]a,b\right[\).
Soit \(q\) une fonction continue de \(\mathbf{R}\) dans \(\mathbf{R}_-\). Que dire de l’ensemble des zéros d’une solution de \(y''+qy=0\) ?
Soient \(c\) et \(d\) deux éléments de \(\mathbf{R}_+^*\) tels que \(c<d\), \(q\) une fonction continue de \(\mathbf{R}\) dans \([c^2,d^2]\). Que dire de l’ensemble des zéros d’une solution de \(y''+qy=0\) ?
[concours/ex6515] polytechnique PC 2006 Soient \(f_1\) et \(f_2\) deux fonctions continues sur \(\mathbf{R}\) telles que \(f_2>f_1\), \((E_1)\) : \(y''+f_1y=0\), et \((E_2)\) : \(y''+f_2y=0\), \(y_1\) (resp. \(y_2\)) une solution non nulle de \((E_1)\) (resp. de \((E_2)\)), \(\alpha\) et \(\beta\) deux zéros consécutifs de \(y_1\). Montrer que \(y_2\) s’annule sur \([\alpha,\beta]\).
[concours/ex6515]
[concours/ex2909] centrale M 1994 Soient \(p\) et \(q\) deux applications continues sur un intervalle \(I\), à valeurs réelles, et telles que \(q>p\). Soient \(x_1\) et \(x_2\) des applications non identiquement nulles sur \(I\) vérifiant respectivement \(x_1''+px_1=0\) et \(x_2''+qx_2=0\).
[concours/ex2909]
Montrer qu’entre deux zéros consécutifs de \(x_1\), il existe un unique zéro de \(x_2\).
[planches/ex3691] mines PSI 2018 On considère l’équation différentielle \((E):y''+a(t)y'+b(t)y=0\) où \(a\) et \(b\) désignent des fonctions continues de \(\mathbf{R}\) dans \(\mathbf{R}\).
[planches/ex3691]
Calculer pour deux solutions \(f\), \(g\) de \((E)\) la quantité \(W=fg'-f'g\).
On suppose \(a\) impaire et \(b\) paire. Montrer que la fonction \(f\) solution de \((E)\) avec les conditions initiales \(f(0)=1\) et \(f'(0)=1\) est paire. Montrer de même que la fonction \(g\) solution de \((E)\) avec les conditions initiales \(g(0)=0\) et \(g'(0)=1\) est impaire. En déduire qu’il existe une base de l’espace des solutions de \((E)\) constituée d’une fonction paire et d’une fonction impaire.
On suppose qu’il existe une base de l’espace des solutions de \((E)\) constituée d’une fonction paire et d’une fonction impaire. Montrer que \(a\) est impaire et \(b\) paire.
[oraux/ex3049] centrale MP 2009 Soit \(I\) un intervalle ouvert et non vide de \(\mathbf{R}\).
[oraux/ex3049]
Soient \(A\) et \(B\) dans \(\mathscr{C}^0(I,\mathbf{R})\) et \((E)\) : \(y''+Ay'+By=0\).
Soit \(f\) une solution non identiquement nulle de \((E)\) et \(S\) un segment de \(I\). Montrer que \(f\) s’annule un nombre fini de fois sur \(S\).
Soient \(f\) et \(g\) deux solutions linéairement indépendantes de \((E)\). Soit \((u,v)\in I^2\) tel que \(u<v\) et \(f(u)=f(v)=0\). Montrer que \(g\) possède un zéro sur \(\left]u,v\right[\).
Soient \(p\) et \(q\) dans \(\mathscr{C}^0(I,\mathbf{R})\) telles que : \(\forall x\in I\), \(p(x)<q(x)\). Soient \(f\), \(g\in\mathscr{C}^2(I,\mathbf{R})\) non identiquement nulles et telles que : \(f''+pf=0\) et \(g''+qg=0\). Soit \((u,v)\in I^2\) tel que \(u<v\) et \(f(u)=f(v)=0\). Montrer que \(g\) possède un zéro sur \(\left]u,v\right[\).
[planches/ex6507] polytechnique MP 2021
[planches/ex6507]
Soient \(q_1\), \(q_2\in\mathscr{C}^0(\mathbf{R}_+,\mathbf{R})\) telles que \(q_1\leqslant q_2\). Soient \(y_1\) (resp. \(y_2\)) une solution non nulle de \(y''+q_1y=0\) (resp. \(y''+q_2y=0\)). Soient \(u\), \(v\in\mathbf{R}_+\) tels que \(u<v\), \(y_1(u)=y_1(v)=0\). Montrer que \(y_2\) s’annule sur \([u,v]\).
Soit \(m\), \(M\in\mathbf{R}\) avec \(0<m\leqslant M\). Soit \(y\) une solution non nulle de \(y''+qy=0\) où \(q\in\mathscr{C}^0(\mathbf{R}_+,\mathbf{R})\) vérifie \(m\leqslant q\leqslant M\). Montrer que l’on peut ranger les zéros de \(y\) en une suite croissante \((t_n)_{n\geqslant 0}\) avec, pour tout \(n\in\mathbf{N}\), \(t_{n+1}-t_n\in\left[-\displaystyle{\pi\over\sqrt M},{\pi\over\sqrt M}\right]\).
[oraux/ex2840] centrale 2004 Soient \(r\) et \(q\) deux fonctions continues sur \(I=[a,b]\), telles que \(\forall x\in I\), \(r(x)\geqslant q(x)\). On considère les équations différentielles : \[\begin{array}{lcc}y''+qy=0&&(E_1)\\z''+rz=0&&(E_2)\end{array}\]
[oraux/ex2840]
Soient \(x_0\) et \(x_1\) deux zéros consécutifs de \(y\), solution non nulle de \((E_1)\). Peut-on avoir \(y'(x_0)=0\) ou \(y'(x_1)=0\) ? Que dire des signes de \(y'(x_0)\) et \(y'(x_1)\) ?
Soit \(z\) une solution de \((E_2)\). On note \(w(x)=y(x)z'(x)-y'(x)z(x)\). Calculer \(w'(x)\) et exprimer \(w(x_1)-w(x_0)\).
Montrer que pour tout \(z\) solution de \((E_2)\), \(z\) s’annule entre \(x_0\) et \(x_1\).
Montrer que toute solution de \((E_1)\) est proportionnelle à \(y\) ou alors qu’elle s’annule entre \(x_0\) et \(x_1\).
Application : Soit \(y\) une solution de l’équation \(y''+e^{x^2}y=0\). La fonction \(y\) s’annule-t-elle ?
[concours/ex3081] polytechnique M 1993 Soit \(J\) l’intervalle \(\left]a,+\infty\right[\), \(q\) une application continue sur \(J\) à valeurs réelles. On suppose que : \[\int_a^{+\infty}\left|q(t)\right|\,dt\] converge. Montrer qu’il existe une solution, à valeurs complexes, de l’équation différentielle : \[x''+(1+q)x=0,\] telle que \(x(t)-e^{it}\) tende vers \(0\) lorsque \(t\) tend vers \(+\infty\).
[concours/ex3081]
[oraux/ex3074] ens lyon MP 2010 Soient \(p\) et \(q\) deux fonctions continues de \(\mathbf{R}\) dans \(\mathbf{R}\) telles que \(p\leqslant q\) et \(f\in\mathscr{C}^2(\mathbf{R},\mathbf{R})\) non identiquement nulle telle que \(f''+pf=0\).
[oraux/ex3074]
Montrer que les zéros de \(f\) sont isolés.
Soient \(x_1<x_2\) deux zéros consécutifs de \(f\) et \(g\in\mathscr{C}^2(\mathbf{R},\mathbf{R})\) telle que \(g''+qg=0\). Montrer que \(g\) s’annule sur \([x_1,x_2]\).
[oraux/ex3009] ens PC 2009 Soient \((p,q)\in\mathscr{C}^0([0,1],\mathbf{R})\) avec \(q\leqslant 0\) et \((E)\) : \(y''+py'+qy=0\). Soit \((a,b)\in\mathbf{R}^2\). Montrer qu’il existe une unique solution \(f\) de \((E)\) telle que \(f(0)=a\) et \(f(1)=b\).
[oraux/ex3009]
[examen/ex0104] mines PSI 2023 Soient \(u\in\mathscr{C}^0(\mathbf{R}^+,\mathbf{R})\) intégrable sur \(\mathbf{R}^+\) et \(f\in\mathscr{C}^2(\mathbf{R}^+,\mathbf{R})\) telle que \(f''+(1+u)f=0\). Soit \(g:x\in\mathbf{R}^+\mapsto f(x)+\displaystyle\int_0^x\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(x-t)\,f(t)\,u(t)\,\mathrm{d}t\).
[examen/ex0104]
Trouver une équation différentielle linéaire vérifiée par \(g\).
En déduire l’existence de \(c\) positif tel que : \(\forall x\in\mathbf{R}^+\), \(|f(x)|\leqslant c+\displaystyle\int_0^x|f(t)\,u(t)|\,\mathrm{d}t\).
Montrer que \(f\) est bornée.
[planches/ex1026] centrale PSI 2014 Soient \(a\), \(b\in\mathbf{R}\) tels que \(a<b\) et \(f\), \(g\in\mathscr{C}^0([a,b],\mathbf{R})\). On suppose \(f>0\). On considère l’équation différentielle \((E)\) : \(y''-fy=g\).
[planches/ex1026]
Montrer que l’équation homogène associée à \((E)\) possède deux solutions \(u\) et \(v\) caractérisées par : \(u(a)=0\), \(u'(a)=1\) et \(v(b)=0\), \(v'(b)=1\).
Montrer que \((E)\) possède au plus une solution s’annulant en \(a\) et en \(b\).
Indication : Considérer \(y_1\) et \(y_2\) deux telles solutions et \(h=y_2-y_1\). Remarquer que \(h^2\) est convexe.
Montrer que \((E)\) possède une solution s’annulant en \(a\) et \(b\) et en donner une expression en fonction de \(u\), \(v\), \(f\) et \(g\).
[concours/ex2393] mines M 1995 Soient \(f\) et \(g\) continues de \([a,b]\) dans \(\mathbf{R}\). On suppose que \(f\) est à valeurs dans \(\mathbf{R}_-\). Montrer que l’équation différentielle \(y''+f(x)y=g(x)\) possède une et une seule solution sur \([a,b]\) vérifiant \(y(a)=y(b)=0\).
[concours/ex2393]
Vous pouvez pré-filtrer l'affichage des exercices, en imposant par exemple des exercices d'un concours particulier