[planches/ex9044] ccinp PC 2022 Soit \(q\) une fonction continue et \(T\)-périodique de \(\mathbf{R}\) dans \(\mathbf{R}\). On considère l’équation différentielle \((E_q)\) : \(y''+qy=0\).
[planches/ex9044]
On suppose que \(q\) est la fonction constante égale à 1. Montrer que les solutions de \((E_1)\) sont toutes bornées.
On rappelle qu’une base de l’espace \(S_q\) des solutions de \((E_q)\) est \((y_1,y_2)\) où \(y_1\) et \(y_2\) sont les solutions de \((E_q)\) telles que \((y_1(0)=1,\ y_1'(0)=0)\) et \((y_2(0)=0,\ y_2'(0)=1)\). Soit \(F\) l’application qui à \(y\in S_q\) associe la fonction \(t\longmapsto y(t+T)\).
Montrer que \(F\) est un endomorphisme de \(S_q\) et que sa matrice dans la base \((y_1,y_2)\) est \(A=\pmatrix{y_1(T)&y_2(T)\cr y_1'(T)&y_2'(T)}\).
Montrer que la fonction \(W:t\longmapsto y_1(t)y_2'(t)-y_1'(t)y_2(t)\) est constante.
Montrer que \(\chi_A(X)=X^2-\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits(A)X+1\).
On suppose que \(|\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits(A)|<2\). Montrer que \(\chi_A\) admet deux racines complexes conjuguées \(\lambda\) et \(\overline\lambda\). Montrer qu’il existe deux solutions \(z_1\) et \(z_2\) de \((E_q)\), à valeurs dans \(\mathbf{C}\), telles que \(F(z_1)=\lambda z_1\) et \(F(z_2)=\overline\lambda z_2\).
[oraux/ex5642] centrale MP 2012 Soient \(q\in{\cal C}^0(\mathbf{R},\mathbf{R})\) paire et \(\pi\)-périodique, \((E)\) l’équation différentielle : \(y''+q\,y=0\).
[oraux/ex5642]
Montrer qu’il existe une unique solution \(y_1\) de \((E)\) telle que \(y_1(0)=1\) et \(y'_1(0)=0\) et une unique solution \(y_2\) de \((E)\) telle que \(y_2(0)=0\) et \(y'_2(0)=1\).
Montrer que \((y_1,y_2)\) est une base de l’espace vectoriel \(S\) des solutions de \((E)\).
Montrer que \(y_1\) est paire et \(y_2\) impaire.
Montrer que la fonction \(y_1\,y'_2-y'_1\,y_2\) est constante.
Pour \(y\in S\), on note \(f(y)\,:\;t\mapsto y(t+\pi)\).
Montrer que \(f\) est un endomorphisme de \(S\).
Déterminer la matrice \(A\) de \(f\) dans la base \((y_1,y_2)\).
Montrer que le polynôme caractéristique de \(A\) est de la forme \(X^2-2a\,X+1\), pour un certain réel \(a\).
On suppose \(a=1\). Montrer que \((E)\) admet une solution \(\pi\)-périodique non triviale.
On suppose \(a=-1\). Montrer que \((E)\) admet une solution \(2\pi\)-périodique non triviale.
On suppose \(|a|>1\). Montrer que \(f\) admet deux vecteurs propres linéairement indépendants. Montrer que ce sont des fonctions non bornées. En déduire les solutions bornées de \((E)\).
[oraux/ex3003] ens lyon MP 2009 Soient \(T>0\), \(q\in\mathscr{C}^0(\mathbf{R},\mathbf{R})\) une fonction \(T\)-périodique, \(S\) l’espace des solutions réelles de \(y''+qy=0\) sur \(\mathbf{R}\), \(y_1\) (resp. \(y_2\)) l’élément de \(S\) tel que \(y_1(0)=0\), \(y_1'(0)=1\) (resp. \(y_2(0)=1\), \(y_2'(0)=0\)).
[oraux/ex3003]
Montrer que si \(f\) est dans \(S\), il en est de même de \(f_T:x\mapsto f(x+T)\). On note \(\Phi\) l’endomorphisme de \(S\) que à \(f\in S\) associe \(f_T\) et \(A\) sa matrice dans la base \((y_1,y_2)\).
Calculer le déterminant de \(A\).
On suppose \(|\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits A|<2\). Montrer que tout élément de \(S\) est borné sur \(\mathbf{R}\).
On suppose \(q\geqslant 0\) et \(q\) non identiquement nulle. Montrer que tout élément de \(S\) s’annule au moins deux fois sur \(\mathbf{R}\).
On suppose que \(q\) est positive et que \(\displaystyle{1\over T}\int_0^Tq<4\). Montrer que toutes les solutions de \((E)\) sont bornées sur \(\mathbf{R}\).
Indication : on admettra que si \(f\in\mathscr{C}^2([a,b],\mathbf{R})\) avec \(f(a)=f(b)=0\) alors \(\displaystyle\int_a^b\left|{f''\over f}\right|>\displaystyle{4\over b-a}\).
[planches/ex4991] mines MP 2019 Soient \(a\) et \(b\) deux fonctions continues et 1-périodiques de \(\mathbf{R}\) dans \(\mathbf{C}\), \(E\) l’espace des solutions de \(y''+a(t)y'+b(t)y=0\). Montrer qu’il existe \(\lambda\in\mathbf{C}^*\) et \(y\in E\setminus\{0\}\) tels que \(\forall t\in\mathbf{R}\), \(y(t+1)=\lambda y(t)\).
[planches/ex4991]
[planches/ex9271] ens paris, ens lyon, ens saclay, ens rennes MP 2023 Soit \(p:\mathbf{R}\rightarrow\mathbf{R}\) une fonction continue, non identiquement nulle, \(\pi\)-périodique et telle que \(\displaystyle\int_0^{\pi}p(t)\mathrm{d} t \geqslant 0\) et \(\displaystyle\int_0^\pi |p(t)| \mathrm{d} t\leqslant\frac{\pi}{4}\).
[planches/ex9271]
Montrer que l’équation \(u''+pu=0\) n’admet pas de solution \(u\) non nulle sur \(\mathbf{R}\) telle qu’il existe \(\lambda\in\mathbf{R}^*\) tel que \(\forall t\in\mathbf{R}\), \(u(t+\pi)=\lambda\, u(t).\)
La plupart des textes affichés provoquent l'apparition de bulles d'aide au passage de la souris