[planches/ex1083] ens paris, ens lyon, ens cachan, ens rennes MP 2016 Soit \(q:\mathbf{R}\rightarrow\mathbf{R}\) continue et de période \(\pi\). On note \(E\) l’ensemble des solutions de : \(y''+qy=0\).
[planches/ex1083]
On note \(f:\mathscr{C}^2(\mathbf{R})\rightarrow\mathscr{C}^2(\mathbf{R})\) l’application qui à \(\varphi\) associe \(x\mapsto\varphi(x+\pi)\).
Montrer que \(E\) est un espace vectoriel réel sont on précisera la dimension.
Montrer que \(f\) induit un endomorphisme de \(E\) noté \(\tilde f\).
Montrer : \(\mathop{\mathchoice{\hbox{det}}{\hbox{det}}{\mathrm{det}}{\mathrm{det}}}\nolimits(\tilde f)=1\).
On suppose \(|\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits\tilde f|<2\). Montrer que \(E\) est constitué de fonctions bornées.
On suppose \(|\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits\tilde f|>2\). Montrer que la fonction nulle est la seule fonction bornée de \(E\).
On suppose \(|\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits\tilde f|=2\). Montrer que \(E\) contient une fonction bornée non nulle.
Soient \((a,b)\in\mathbf{R}^2\) avec \(a<b\), \(\varphi:[a,b]\rightarrow\mathbf{R}\) de classe \(\mathscr{C}^2\), nulle en \(a\) et \(b\) et strictement positive sur \(\left]a,b\right[\). On admet que, pour une telle fonction, \(\displaystyle\int_a^b{|\varphi''(t)|\over\varphi(t)}\,dt>{4\over b-a}\).
Montrer que si \(q\) est positive, \(q\) n’est pas la fonction nulle et \(\displaystyle\int_0^\pi q(t)\,dt\leqslant{4\over\pi}\), alors \(E\) ne contient que des fonctions bornées.
[planches/ex7679] ens PSI 2022 Soit \(q\in\mathscr{C}^0(\mathbf{R},\mathbf{R})\) paire et \(2\pi\)-périodique. L’objectif de l’exercice est d’étudier les solutions bornées de l’équation \((E)\) : \(y''+qy=0\). Soient \(y_1\) la solution de \((E)\) vérifiant les conditions \(y_1(0)=1\) et \(y_1'(0)=0\) et \(y_2\) la solution telle que \(y_2(0)=0\) et \(y_2'(0)=1\).
[planches/ex7679]
Montrer que la fonction \(y_1\) est paire et que la fonction \(y_2\) est impaire.
Soient \(W=\mathop{\mathchoice{\hbox{Vect}}{\hbox{Vect}}{\mathrm{Vect}}{\mathrm{Vect}}}\nolimits(y_1,y_2)\) et \(A:y\in W\longmapsto(x\longmapsto y(\pi+x))\). Déterminer la matrice de \(A\) dans la base \((y_1,y_2)\) puis calculer \(\mathop{\mathchoice{\hbox{det}}{\hbox{det}}{\mathrm{det}}{\mathrm{det}}}\nolimits(A)\).
Avec la première question, calculer \(A^{-1}\).
À l’aide du théorème de Cayley-Hamilton, montrer que \(y_1(\pi)=y_2'(\pi)\).
Soit \(T\) la trace de \(A\). Montrer que, si \(|T|<2\), les solutions de \((E)\) sont bornées puis que, si \(|T|=2\), il existe une solution de \((E)\) non nulle et bornée.
[oraux/ex3003] ens lyon MP 2009 Soient \(T>0\), \(q\in\mathscr{C}^0(\mathbf{R},\mathbf{R})\) une fonction \(T\)-périodique, \(S\) l’espace des solutions réelles de \(y''+qy=0\) sur \(\mathbf{R}\), \(y_1\) (resp. \(y_2\)) l’élément de \(S\) tel que \(y_1(0)=0\), \(y_1'(0)=1\) (resp. \(y_2(0)=1\), \(y_2'(0)=0\)).
[oraux/ex3003]
Montrer que si \(f\) est dans \(S\), il en est de même de \(f_T:x\mapsto f(x+T)\). On note \(\Phi\) l’endomorphisme de \(S\) que à \(f\in S\) associe \(f_T\) et \(A\) sa matrice dans la base \((y_1,y_2)\).
Calculer le déterminant de \(A\).
On suppose \(|\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits A|<2\). Montrer que tout élément de \(S\) est borné sur \(\mathbf{R}\).
On suppose \(q\geqslant 0\) et \(q\) non identiquement nulle. Montrer que tout élément de \(S\) s’annule au moins deux fois sur \(\mathbf{R}\).
On suppose que \(q\) est positive et que \(\displaystyle{1\over T}\int_0^Tq<4\). Montrer que toutes les solutions de \((E)\) sont bornées sur \(\mathbf{R}\).
Indication : on admettra que si \(f\in\mathscr{C}^2([a,b],\mathbf{R})\) avec \(f(a)=f(b)=0\) alors \(\displaystyle\int_a^b\left|{f''\over f}\right|>\displaystyle{4\over b-a}\).
[oraux/ex3097] mines PC 2010 Soient \(a\), \(b\in\mathscr{C}^0(\mathbf{R},\mathbf{R})\) et \((f,g)\) un système fondamental de solutions de l’équation différentielle \((E)\) : \(y''+ay'+by=0\). On suppose \(f\) paire et \(g\) impaire. Montrer que \(a\) est impaire et \(b\) est paire.
[oraux/ex3097]
[planches/ex9044] ccinp PC 2022 Soit \(q\) une fonction continue et \(T\)-périodique de \(\mathbf{R}\) dans \(\mathbf{R}\). On considère l’équation différentielle \((E_q)\) : \(y''+qy=0\).
[planches/ex9044]
On suppose que \(q\) est la fonction constante égale à 1. Montrer que les solutions de \((E_1)\) sont toutes bornées.
On rappelle qu’une base de l’espace \(S_q\) des solutions de \((E_q)\) est \((y_1,y_2)\) où \(y_1\) et \(y_2\) sont les solutions de \((E_q)\) telles que \((y_1(0)=1,\ y_1'(0)=0)\) et \((y_2(0)=0,\ y_2'(0)=1)\). Soit \(F\) l’application qui à \(y\in S_q\) associe la fonction \(t\longmapsto y(t+T)\).
Montrer que \(F\) est un endomorphisme de \(S_q\) et que sa matrice dans la base \((y_1,y_2)\) est \(A=\pmatrix{y_1(T)&y_2(T)\cr y_1'(T)&y_2'(T)}\).
Montrer que la fonction \(W:t\longmapsto y_1(t)y_2'(t)-y_1'(t)y_2(t)\) est constante.
Montrer que \(\chi_A(X)=X^2-\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits(A)X+1\).
On suppose que \(|\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits(A)|<2\). Montrer que \(\chi_A\) admet deux racines complexes conjuguées \(\lambda\) et \(\overline\lambda\). Montrer qu’il existe deux solutions \(z_1\) et \(z_2\) de \((E_q)\), à valeurs dans \(\mathbf{C}\), telles que \(F(z_1)=\lambda z_1\) et \(F(z_2)=\overline\lambda z_2\).
Dans la page dédiée à l'examen d'un exercice, vous pouvez choisir de quelle façon sont affichées les solutions