[oraux/ex3169] centrale MP 2011 Soient \(q\in\mathscr{C}^0(\mathbf{R}_+,\mathbf{R}_+)\) et \(E\) l’ensemble des solutions de l’équation \(y''-qy=0\).
[oraux/ex3169]
Justifier l’existence de la solution \(y_s\) telle que \(y_s(0)=1\) et \(y'_s(0)=s\).
Montrer que si \(y\in E\) alors \(y^2\) est convexe.
Montrer que \(y_1\geqslant 1\) sur \(\mathbf{R}_+\) puis que \(\displaystyle{1\over y_1^2}\) est intégrable sur \(\mathbf{R}_+\).
Montrer que \(Y:x\mapsto y_1(x)\displaystyle\int_x^{+\infty}{dt\over y_1(t)^2}\) est une solution bornée de \(E\).
Indication : Montrer que \(\displaystyle\int_x^{+\infty}{dt\over y_1(t)^2}\leqslant\displaystyle\int_x^{+\infty}{y_1'(t)\over(y_1-t)^2}\,dt\).
Montrer qu’il existe un unique \(s_0\in\mathbf{R}\) tel que \(y_{s_0}\) ne s’annule pas et soit bornée sur \(\mathbf{R}_+\). Montrer que \(y_{s_0}\) et sa dérivée convergent en \(+\infty\).
Que dire de la limite de \(y_s\) si \(s>s_0\) ? si \(s<s_0\) ?
[oraux/ex3122] centrale PC 2010 Soient \(I\) un intervalle de \(\mathbf{R}\), \(q\in\mathscr{C}^0(I,\mathbf{R}_-^*)\) et \((E)\) l’équation différentielle \(y''+qy=0\).
[oraux/ex3122]
Si \(f\) est solution de \(E\), montrer que \(f^2\) est convexe.
Montrer que toute solution non identiquement nulle de \((E)\) s’annule au plus une fois.
[planches/ex0935] polytechnique, ens cachan PSI 2013 Soit \((E)\) l’équation différentielle : \(y''(x)+q(x)y(x)=0\) où \(q\) est une fonction continue de \(\mathbf{R}\) dans \(\mathbf{R}\), non identiquement nulle et négative.
[planches/ex0935]
Soit \(y\in\mathscr{C}^2(\mathbf{R},\mathbf{R})\) une solution positive de \((E)\) sur \(\mathbf{R}\). Montrer que \(y\) est convexe.
Soit \(y\in\mathscr{C}^2(\mathbf{R},\mathbf{R})\) une solution de \((E)\) sur \(\mathbf{R}\). Montrer que \(y^2\) est convexe.
Soit \(y\in\mathscr{C}^2(\mathbf{R},\mathbf{R})\) une solution bornée de \((E)\) sur \(\mathbf{R}\). Montrer que \(y\) est identiquement nulle.
Soit \(y\in\mathscr{C}^2(\mathbf{R},\mathbf{R})\) une solution de \((E)\) sur \(\mathbf{R}\) telle que \(y(0)=1\) et \(y'(0)=0\).
Montrer que pour tout \(x\in\mathbf{R}\), \(|y(x)|\geqslant 1\), puis \(y(x)\geqslant 1\).
Montrer que \(y\) est convexe.
[concours/ex1714] polytechnique MP 1999 Soit \(q:\mathbf{R}\rightarrow\mathbf{R}\) continue, positive et \(y\) solution de \((E)\) : \(y''(x)=q(x)y(x)\).
[concours/ex1714]
Montrer que \(y^2\) est convexe. Peut-elle être bornée ?
On suppose que \(y\) n’est pas nulle. Montrer que \(y\) et \(y'\) s’annulent au plus une fois.
Montrer que \(\displaystyle{y^2(x)\over x}\) a une limite finie en \(+\infty\).
[equadiff/ex0107] Soit l’équation \(x''+q(t)x=0\) avec \(q\) continue et négative sur \(\mathbf{R}\). Montrer qu’une solution de \((E)\) qui admet deux zéros est identiquement nulle.
[equadiff/ex0107]
Vous pouvez choisir la fonte des exercices lors de la compilation des PDF