[planches/ex1110] centrale MP 2016 Soit \((E)\) l’équation différentielle : \((1-x)^3y''(x)=y(x)\).
[planches/ex1110]
Déterminer la structure de l’ensemble des solutions de \((E)\) sur \(\left]-\infty,1\right[\). Montrer que toutes ces solutions sont de classe \(\mathscr{C}^\infty\) sur \(\left]-\infty,1\right[\).
Soient \(y\) une solution de \((E)\) sur \(\left]-\infty,1\right[\) et, pour \(n\) dans \(\mathbf{N}\), \(a_n=\displaystyle{y^{(n)}(0)\over n\,!}\). Trouver une relation de récurrence satisfaite par \((a_n)_{n\geqslant 0}\).
Montrer que les solutions de \((E)\) sur \(\left]-\infty,1\right[\) sont développables en série entière au voisinage de 0.
Soit \(y\) la solution de \((E)\) sur \(\left]-\infty,1\right[\) telle que \(y(0)=0\), \(y'(0)=1\). Que dire de \(y(x)\) lorsque \(x\) tend vers 1 ?
[examen/ex1383] polytechnique MP 2024 Pour \(f\in\mathscr{C}^\infty(\mathbf{R},\mathbf{R})\), on pose \(H(f):x\mapsto x^2f(x)-f''(x)\), \(A_-(f):x\mapsto -f'(x)+xf(x)\) et \(A_+(f):x\mapsto f'(x)+xf(x)\).
[examen/ex1383]
Déterminer \(A_-\circ A_+\) et \(A_+\circ A_-\).
Montrer qu’il existe une unique \(\varphi_0\in\mathscr{C}^\infty(\mathbf{R},\mathbf{R})\) de carré intégrable, telle que \(H(\varphi_0)=\varphi_0\) et \(\varphi_0(0)=1\).
On pose, pour \(n\in\mathbf{N}^*\), \(\varphi_n=A_-^n(\varphi_0)\).
Montrer que, pour tout \(n\in\mathbf{N}\), \(H(\varphi_n)=(2n+1)\varphi_n\).
Montrer que \(\varphi_n\) s’écrit sous la forme \(P_n\times\varphi_0\) avec \(P_n\) polynomiale.
[planches/ex9340] ens PSI 2023 Soient \(a>0\) et \(q \in\mathscr{C}^2(\left[a,+\infty\right[,\mathbf{R}^{+*})\) telle que \(\displaystyle\int_a^{+\infty} \sqrt {q(t)}\,{\rm d}t = +\infty\).
[planches/ex9340]
Soit \((E)\) l’équation différentielle \(y''+qy=0\)
Soient \(y_1\) et \(y_2\) deux fonctions de classe \(\mathscr{C}^1\) qui n’ont pas de zéros en commun. On pose \(\Phi = y_1 + iy_2\) et \(\Phi (a) = r_0e^{i\theta_0}\).
Montrer que \(\forall x \geqslant a\), \(\Phi (x) = e^{\Psi(x)}\) où \(\Psi(x)=\displaystyle\int_a^x\frac{\Phi'(t)}{\Phi(t)} \,{\rm d}t + \mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits (r_0) + i\theta_0\).
Montrer que l’on peut écrire \(y_1(x) =r(x)\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits(\theta(x))\) et \(y_2(x) =r(x) \mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits (\theta(x))\) où \(r(x) = \sqrt{y_1^2(x) + y_2^2(x)}\) et \(\theta (x) = \theta_0 +\displaystyle\int_a^x \displaystyle\frac{y_1y'_2-y_2y'_1}{y_1^2+ y_2^2}\).
On pose \(x \mapsto f(x) =\displaystyle\int_a^{x} \sqrt {q(t)}\,{\rm d}t\).
Montrer que \(f\) réalise une bijection de \(\left[a,+\infty\right[\) sur \(\mathbf{R}^+\).
Soit \(y\) une solution de \((E)\), non identiquement nulle. On pose \(Y = y\mathbin{\circ} f^{-1}\). Montrer que \(Y'' +vY' +Y =0\) où \(v~: t \mapsto\displaystyle\frac{q'(f^{-1}(t))}{2 (q(f^{-1}(t)))^{3/2}}\).
Montrer que \(Y\) et \(Y'\) n’ont pas de zéro en commun et que l’on peut écrire \(Y = r \mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits (\theta)\) et \(Y'= r \mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits (\theta)\) où \(r\), \(\theta\) sont des fonctions de classe \(\mathscr{C}^1\).
Montrer que \((r^2)' = -2v r^2 \mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits^2(\theta)\). En déduire que \(y\) et \(y'\) sont bornées.
[planches/ex6154] ens lyon MP 2021 Soit \(k\in\mathbf{R}\). Soit \(y\in\mathscr{C}^2(\mathbf{R},\mathbf{R})\) vérifiant \(y''=(x^3+kx)y\), \(y(0)=1\) et \(y'(0)=0\). Montrer que l’ensemble des zéros de \(y\) est majoré et non minoré.
[planches/ex6154]
[planches/ex9269] ens saclay, ens rennes MP 2023 Soient \(I\) un intervalle non trivial de \(\mathbf{R}\), et \(a\), \(b\) deux fonctions continues de \(I\) dans \(\mathbf{R}\).
[planches/ex9269]
On considère l’équation différentielle \((E)\) : \(x''+a(t)\,x'+b(t)\,x=0\).
Soit \(x\) une solution non nulle de \((E)\). Montrer que les zéros de \(x\) sont isolés.
On suppose \(a\) de classe \(\mathscr{C}^1\). Montrer qu’il existe \(z\) de classe \(\mathscr{C}^2\) de \(I\) dans \(\mathbf{R}\), et \(q : I \rightarrow \mathbf{R}\) continue telles que \(x \mapsto [t \mapsto x(t)\,e^{z(t)}]\) définisse une bijection de l’ensemble des solutions de \((E)\) sur celui des solutions de \(y''+q(t)\,y=0\).
Soient \(q_1\), \(q_2\) deux fonctions continues de \(I\) dans \(\mathbf{R}\) telles que \(q_1 \leqslant q_2\). On considère l’équation différentielle \((E_i)\) : \(y''+q_i(t)\, y=0\) pour \(i \in \{1,2\}\). Soient \(y_1\), \(y_2\) des solutions respectives de \((E_1)\) et \((E_2)\) sur \(I\). Soient \(\alpha<\beta\) deux zéros consécutifs de \(y_1\).
Montrer que \(y_2\) s’annule dans \([\alpha,\beta]\).
Soient \(q : I \rightarrow \mathbf{R}\) continue, et \(m,M\) deux réels strictement positifs tels que \(m \leqslant q \leqslant M\).
Soient \(\alpha<\beta\) deux zéros consécutifs d’une solution non nulle de \(y''+q(t)y=0\). Montrer que \(\displaystyle\frac{\pi}{\sqrt{M}} \leqslant\beta-\alpha \leqslant\frac{\pi}{\sqrt{m}}\).
Vous pouvez choisir la fonte des exercices lors de la compilation des PDF