[oraux/ex3077] ens cachan MP 2010 Soient \(T\in\mathbf{R}_+^*\) et \(a\in\mathscr{C}^1(\mathbf{R},\mathbf{R})\) une fonction \(T\)-périodique. On pose \(a_0=\displaystyle{1\over T}\int_0^Ta(x)\,dx\). Pour \(\varepsilon>0\), soit \(a_\varepsilon:x\mapsto a(x/\varepsilon)\). Soit \(\varphi\in\mathscr{C}^1([0,1],\mathbf{R})\).
[oraux/ex3077]
Montrer que \(\mathop{\mathchoice{\hbox{lim}}{\hbox{lim}}{\mathrm{lim}}{\mathrm{lim}}}\limits_{\varepsilon\rightarrow0^+}\displaystyle\int_0^1a_\varepsilon(u)\varphi(u)\, du=a_0\displaystyle\int_0^1\varphi(u)\,du\).
On suppose désormais qu’il existe \(\alpha>0\) tel que \(\forall x\in\mathbf{R}\), \(a(x)\geqslant\alpha\). Soit \(f\in\mathscr{C}^0([0,1],\mathbf{R})\).
Soit \(\varepsilon>0\). Montrer qu’il existe une unique \(u_\varepsilon\in\mathscr{C}^2([0,1],\mathbf{R})\) solution du problème \((a_\varepsilon u')'=f\) et \(u(0)=u(1)=0\).
Que dire de \(u_\varepsilon\) lorsque \(\varepsilon\rightarrow0^+\) ?
[oraux/ex2799] mines 2003
[oraux/ex2799]
Soit \((E)\) : \(y''+y=f(x)\) où \(f\in\mathscr{C}^0(\mathbf{R}_+,\mathbf{R})\). Montrer que : \[g(x)=\displaystyle\int_0^xf(t)\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(x-t)\,dt\] est une solution de \((E)\) vérifiant \(y(0)=0\) et \(y'(0)=0\).
Soit \(\sigma>0\). On cherche une solution du problème de Cauchy \((E')\) : \(y''+y=\sigma y^2\), \(y(0)=1/2\) et \(y'(0)=0\). Soit \(b>0\) tel que \(\sigma b<1/2\). Soit \((y_n)\) la suite définie par : \[y_0(x)={1\over2}\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits x\quad\hbox{et}\quad\forall n\geqslant 1,\quad y_n''+y_n=\sigma y_{n-1},\ y_n(0)=y_n'(0)=0.\]
Exprimer \(y_n\) à l’aide de \(y_{n-1}\) et d’une intégrale.
Montrer : \(|y_n(x)-y_{n-1}(x)|\leqslant\displaystyle{1\over2}\,{(\sigma x)^n\over n\,!}\).
Montrer que \((E')\) a une unique solution sur \([0,b]\).
[oraux/ex2981] centrale MP 2008 (avec Maple)
[oraux/ex2981]
Maple
Résoudre \(y''+\displaystyle{y\over x^2}=0\) sur \(\left[1,+\infty\right[\) à l’aide de Maple. Existe-t-il des solutions bornées ?
Soit \((E)\) : \(y''+\displaystyle{y\over x^2+4x+3}=0\). On se donne une solution \(f\) bornée de \((E)\) sur \(\left[1,+\infty\right[\). Montrer que \(f'\) admet une limite nulle en \(+\infty\). Existe-t-il des solutions non bornées sur \(\left[1,+\infty\right[\) ?
[oraux/ex2784] mines 2003 Soit \(\lambda>0\). On considère l’équation différentielle : \[(E)\qquad y''=-y+\lambda y'(1-y^2).\] On note \(\varphi:I\rightarrow\mathbf{R}\) une solution maximale de \((E)\). On pose \(g=\varphi^2+(\varphi')^2\).
[oraux/ex2784]
Montrer que \(g'\leqslant 2\lambda g\).
Soit \(a\in I\).
Soit \(x\in\left[a,+\infty\right[\cap I\). Montrer que \(g(x)\leqslant g(a)e^{2\lambda(x-a)}\).
Montrer que \(I\supset\left[a,+\infty\right[\).
[concours/ex4044] polytechnique pox P 1990 Soit \(f(x)=\displaystyle{\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits x\over x}\).
[concours/ex4044]
Trouver une équation différentielle linéaire, d’ordre \(2\), à coefficients polynomiaux, satisfaite par \(f\).
Résoudre cette équation.
Vous pouvez choisir la typographie des énoncés : HTML (MathJax, plus joli) ou sous forme d'image (GIF, plus rapide)