[planches/ex0929] polytechnique MP 2013 Soit \(q\in\mathscr{C}^0(\mathbf{R},\mathbf{R})\) intégrable. Étudier les solutions bornées de \(y''-(1+q)y=0\).
[planches/ex0929]
[oraux/ex5092] polytechnique MP 2012 Soient \(E={\cal C}^2([0,1],\mathbf{R})\) et \(Q:u\in E\mapsto\displaystyle\int_0^1 e^x\left( u(x)^2+u'(x)^2\right)\,dx\).
[oraux/ex5092]
Soient \(u,v\in E\) et \(\Phi_{u,v}:t\in\mathbf{R}\mapsto Q(u+tv)\). À quelle condition \(\Phi_{u,v}\) admet-elle un minimum en \(t_0\) ?
On fixe \(a\) et \(b\) dans \(\mathbf{R}\) et on note \(L=\left\{ u\in E,\; u(0)=a\mbox{ et }u(1)=b\right\}\). La restriction de \(Q\) à \(L\) présente-t-elle un minimum ? Si oui, est-il unique ?
[oraux/ex3147] polytechnique, espci PC 2011 Soit \(y\) une solution de \(y''(x)=xy(x)\) sur \([0,1]\) telle que \(y(0)=1\) et \(y'(0)=0\). Montrer : \(\forall x\in[0,1]\), \(|y'(x)|+|y(x)|\leqslant e^x\).
[oraux/ex3147]
[oraux/ex2974] mines PSI 2008 Soient \(p\in\mathscr{C}^0(\mathbf{R},\mathbf{R}_-^*)\) et \((E)\) : \(y''+py=0\). Soit \(f\) une solution de \((E)\).
[oraux/ex2974]
On suppose : \(\forall x\in\mathbf{R}\), \(f(x)>0\). Montrer que \(f\) est non bornée.
On suppose qu’il existe un unique \(a\in\mathbf{R}\) tel que \(f(a)=0\). Montrer que \(f\) est non bornée.
On suppose que \(f\) est bornée. Montrer que \(f\) est identiquement nulle.
[planches/ex1110] centrale MP 2016 Soit \((E)\) l’équation différentielle : \((1-x)^3y''(x)=y(x)\).
[planches/ex1110]
Déterminer la structure de l’ensemble des solutions de \((E)\) sur \(\left]-\infty,1\right[\). Montrer que toutes ces solutions sont de classe \(\mathscr{C}^\infty\) sur \(\left]-\infty,1\right[\).
Soient \(y\) une solution de \((E)\) sur \(\left]-\infty,1\right[\) et, pour \(n\) dans \(\mathbf{N}\), \(a_n=\displaystyle{y^{(n)}(0)\over n\,!}\). Trouver une relation de récurrence satisfaite par \((a_n)_{n\geqslant 0}\).
Montrer que les solutions de \((E)\) sur \(\left]-\infty,1\right[\) sont développables en série entière au voisinage de 0.
Soit \(y\) la solution de \((E)\) sur \(\left]-\infty,1\right[\) telle que \(y(0)=0\), \(y'(0)=1\). Que dire de \(y(x)\) lorsque \(x\) tend vers 1 ?
Vous pouvez pré-filtrer l'affichage des exercices, en imposant par exemple des exercices d'une filière en particulier